최대의 이익을 위한 최대의 선택!

LS ELECTRIC에서는 저희 제품을 선택하시는 분들께 최대의 이익을 드리기 위하여 항상 최선의 노력을 다하고 있습니다.

AC 가변속 드라이브

LSLV-H100 Series

사용설명서

0.75-18.5kW [200V] 0.75-500kW [400V]

LSELECT

RIC

 사용 전에 안전을 위한 주의사항을 반드시 읽고 정확하게 사용하여 주십시오.

 사용설명서를 읽고 난 뒤에는 제품을 사용하는 사람이 항상 볼 수 있는 곳에 잘 보관하십시오, 이 사용 설명서는 전자 기기 관련 기본 지식이 있는 사용자를 위해 제작되었습니다. * H100 은 LSLV-H100 의 시리즈명 입니다.

* 본 제품의 소프트웨어는 기능 및 성능 향상을 위해 개정될 수 있으며, 본 사용 설명서와 다른 내용이 있을 경우 아래 당사 홈페이지에서 최신본을 확인해 주시기 바랍니다.

(http://www.ls-electric.com)

안전을 위한 주의 사항

제품을 사용하기 전에 안전을 위한 주의 사항을 반드시 읽고 제품을 올바르게 사용하십시오.

사용 설명서에 표기된 안전 기호

🔺 위험

주의하여 대처하지 않으면 사용자가 사망하거나 중상을 입을 수 있는 긴급한 위험 상황입니다.

▲ 경고

주의하여 대처하지 않으면 사용자가 사망하거나 중상을 입을 수 있는 잠재적인 위험 상황입니다.

① 주의

주의하여 대처하지 않으면 사용자가 부상을 당하거나 재산상의 손해를 입을 수 있는 잠재적인 위험 상황입니다.

안전을 위한 주의 사항

🛕 위험

- 전원이 켜져 있는 동안에는 절대로 제품의 커버를 제거하거나 내부 기판(PCB) 및 접점을 만지지 마십시오. 또한, 제품의 커버가 열린 상태에서는 제품을 동작하지 마십시오. 고압 단자나 충전부가 노출되어 작업자가 감전될 수 있습니다.
- 제품의 전원이 꺼져 있어도 배선 작업이나 정기 점검 등과 같이 반드시 필요한 경우 이외에는 커버를 열지 마십시오. 제품 내부에는 전원이 차단된 후에도 장시간 전압이 충전되어 있으므로 작업자가 감전될 수 있습니다.
- 커버를 열고 작업할 때에는 전원이 차단되고 10분 이상 지난 후 테스터 등으로 제품의 직류 전압이 방전된 것을 확인하십시오. 그렇지 않으면 작업자가 감전될 수 있습니다.
- Supply earthing system: TT, TN, not suitable for corner-earthed systems

\land 경고

Г

- 안전한 사용을 위해 제품과 모터는 반드시 접지하십시오. 그렇지 않은 경우 작업자가 감전될 수 있습니다.
- 제품이 고장 난 경우 전원을 켜지 마십시오. 제품의 전원을 분리한 후 전문가에게 수리를 맡기십시오.
- 동작 중 또는 동작 후의 제품은 매우 뜨거우므로 접촉하지 않도록 주의하십시오. 인체에 접촉하면 화상을 입을 수 있습니다.
- 제품 내부에 나사, 금속 물질, 물, 기름 등의 물질이 들어가지 않도록 하십시오. 제품이 파손되거나 화재가 발생할 수 있습니다.
- 젖은 손으로 스위치를 조작하지 마십시오. 그렇지 않은 경우 작업자가 감전될 수 있습니다.

① 주의

- 제품 내부를 임의로 변경하지 마십시오. 제품 고장 및 오동작으로 인해 작업자가 부상을 당하거나 제품 손상이 발생할 수 있습니다. 또한, 임의로 변경한 제품은 제품 보증 대상에서 제외됩니다.
- 제품은 3상 모터 운전용으로 설계되었으므로 단상 모터 운전에 사용하지 마십시오.
 단상 모터를 사용할 경우 모터가 파손될 수 있습니다.
- 전선 위에 무거운 물체를 올려 두지 마십시오. 전선이 손상되어 화재가 발생하거나 작업자가 감전될 수 있습니다.

참고

IEC 60439-1 의 규정에 따라, 전원 입력단에서 허용되는 규약 단락 전류는 100kA 입니다. LSLV-H100 는 제품의 최대 정격 전압에서 정격 100kA 대칭 전류를 견딜 수 있도록 설계되었으며, 선택된 MCCB 에 의해 결정됩니다. 아래에 권고되는 MCCB 에 대한 RMS 대칭 전류 테이블을 참조하십시오.

Note

Maximum allowed prospective short-circuit current at the input power connection is defined in IEC 60439-1 as 100 kA. LSLV-H100 is suitable for use in a circuit capable of delivering not more than 100kA RMS at the drive's maximum rated voltage, depending on the selected MCCB. RMS symmetrical amperes for recommended MCCB are the following table.

Remarque

Le courant maximum de court-circuit présumé autorisé au connecteur d'alimentation électrique est défini dans la norme IEC 60439-1 comme égal à 100 kA. Selon le MCCB sélectionné, la série LSLV-H100 peut être utilisée sur des circuits pouvant fournir un courant RMS symétrique de 100 kA maximum en ampères à la tension nominale maximale du variateur. Le tableau suivant indique le MCCB recommandé selon le courant RMS symétrique en ampères.

Working Voltage	UTE100 (E/N)	UTS150 (N/H/L)		UTS250 (N/H/L)		UTS400 (N/H/L)		
240V(50/60Hz)	50/65kA	65/100/150	JkA	65/100/150kA		65/100/150kA		
480V(50/60Hz)	25/35kA	35/65/100	kA	35/65/	35/65/100kA		5/65/100kA	
Working Voltage	ABS33c	ABS53c	53c ABS63c		ABS10)3c	ABS203c	ABS403c
240V(50/60Hz)	30kA	35kA		35kA	85k/	4	85kA	75kA
480V(50/60Hz)	7.5kA	10kA		10kA	26kA		26kA	35kA

상황으로 찾아보기

다음은 제품을 사용하는 도중에 사용자가 자주 접하게 되는 상황을 정리한 표입니다. 아래 내용을 참조하여 보다 쉽고 빠르게 관련 정보를 검색하십시오.

상황	참조
제품 전원 공급과 동시에 운전이 시작되도록 하고 싶습니다.	<u>p.102</u>
모터 관련 파라미터를 설정하고 싶습니다.	<u>p.205</u>
제품이나 모터에서 이상한 점이 발견되었습니다.	<u>p.337,</u> p.500
자동 튜닝이 무엇인가요?	<u>p.205</u>
권장 배선 길이를 알고 싶습니다.	<u>p.40</u>
모터 운전 소음이 너무 큽니다.	<u>p.235</u>
PID 제어 운전을 하고 싶습니다.	<u>p.152</u>
다기능 입력 단자 P1~P7의 공장 출하 값을 알고 싶습니다.	<u>p.37</u>
변경한 파라미터만 확인하고 싶습니다.	<u>p.246</u>
최근 트립 및 고장 이력을 확인하고 싶습니다.	<u>p.474</u>
볼륨 저항을 사용해서 주파수를 변경하고 싶습니다.	<u>p.85</u>
아날로그 출력 단자에 주파수 미터를 설치하고 싶습니다.	<u>p.38</u>
모터의 전류 값을 키패드에서 확인 할 수 있나요?	<u>p.51</u>
다단속 주파수를 사용하고 싶습니다.	<u>p.96</u>
모터에서 심한 열이 발생합니다.	<u>p.314</u>
인버터가 너무 뜨겁습니다.	<u>p.326</u>
팬이 회전하지 않습니다.	<u>p.508</u>
인버터를 사용하지 않을 때 보관 방법을 알고 싶습니다.	<u>p.514</u>
모니터링 항목을 변경하고 싶습니다.	<u>p.308</u>

목차

1	설치	준비하기		1
	1.1	제품 스	별 방법	1
	1.2	각부 명	경칭 확인	3
	1.3	설치 혼	년경 확인	10
	1.4	설치 우	치 선정	11
	1.5	전선 선	[택	14
2	제품	설치하기		17
	2.1	벽면 또	는 패널 내부에 거치	20
	2.2	제어보.	드 준비(RTC용 배터리 장착)	23
	2.3	배선		24
	2.4	설치 후	회점검사항 확인	45
	2.5	시운전		47
3	기본	조작법 일	날아두기	49
	3.1	키패드	구성 및 기능 설명	49
		3.1.1	키 기능 설명	50
		3.1.2	표시부 구성	51
		3.1.3	메뉴 구성	54
	3.2	키패드	사용법	58
		3.2.1	표시 모드 이동	58
		3.2.2	운전 모드 선택	59
		3.2.3	파라미터 표시 모드의 그룹 이동	60
		3.2.4	유저/매크로 표시 모드의 그룹 이동	62
		3.2.5	코드 (기능 항목) 이동	63

	3.2.6	원하는 코드로 직접 이동(점프 코드)	65
	3.2.7	모니터 표시 모드에서 파라미터 값 설정	66
	3.2.8	모니터 표시 모드의 항목 변경	68
	3.2.9	상태 표시부의 모니터링 항목 설정	69
3.3	고장 성	상태 모니터링	71
	3.3.1	운전 중 고장이 발생한 경우	71
	3.3.2	1 개 이상의 고장이 동시에 발생한 경우	72
3.4	파라미	터 초기화 방법	72
4 기본	기능 사용	용하기	74
4.1	운전 드	코드 (HAND/AUTO/OFF) 선택	78
4.2	운전 =	주파수 설정	83
	4.2.1	키패드에서 운전 주파수 설정 _ 직접 입력	84
	4.2.2	키패드에서 운전 주파수 설정 -[▲] 키와 [▼] 키 사용	84
	4.2.3	단자대 V1 전압 입력으로 주파수 설정	84
	4.2.4	단자대 I2 전압 입력으로 주파수 설정	92
	4.2.5	단자대 TI 펄스 입력으로 주파수 설정	93
	4.2.6	RS-485 통신으로 주파수 설정	94
4.3	아날로	그 입력으로 주파수 고정	95
4.4	속도 단	단위 변경(Hz↔Rpm)	96
4.5	다단속	· 주파수 설정	96
4.6	운전 거	지령 방법 설정	
	4.6.1	키패드에서 운전 지령 설정	
	4.6.2	단자대에서 운전 지령 설정(정/역방향 단자 지정)	99
	4.6.3	단자대에서 운전 지령 설정(지령/회전 방향 단자 지정)	100
	4.6.4	RS-485 통신으로 운전 지령 설정	100

Г

4.7	정방향/역방향 회전 금지	
4.8	전원 투입 즉시 기동(Power-on Run)	102
4.9	트립 발생 후 초기화 시 재기동(Reset Restart)	104
4.10	가/감속 시간 설정	106
	4.10.1 최대 주파수 기준으로 가/감속 시간 설정	106
	4.10.2 운전 주파수 기준으로 가/감속 시간 설정	108
	4.10.3 다기능 단자로 다단 가/감속 시간 설정	109
	4.10.4 가/감속 시간 전환 주파수 설정	110
4.11	가/감속 패턴 설정	112
4.12	가/감속 중지 지령 설정	114
4.13	V/F 제어	115
	4.13.1 리니어 V/F 패턴 운전	115
	4.13.2 2승 저감 V/F 패턴 운전	116
	4.13.3 사용자 V/F 패턴 운전	117
4.14	토크 부스트	118
	4.14.1 수동 토크 부스트	118
	4.14.2 자동 토크 부스트	119
4.15	모터 출력 전압 조정	120
4.16	기동 방법 설정	121
	4.16.1 가속 기동	121
	4.16.2 직류 제동 후 기동	121
4.17	정지 방법 설정	122
	4.17.1 감속 정지	122
	4.17.2 직류 제동 후 정지	123
	4.17.3 프리 런(Free Run) 정지	124

		4.17.4	파워 제동(Power Braking)	125
	4.18	주파수	제한	126
		4.18.1	최대 주파수와 시작 주파수를 이용하여 주파수 제한	126
		4.18.2	주파수 상하한 값을 이용하여 주파수 제한	127
		4.18.3	주파수 점프	128
	4.19	제 2 윤	은전 방법 설정	130
	4.20	다기능	입력 단자 제어	131
	4.21	다기능	입력 단자 On/Off Delay 제어	132
	4.22	출력 전	선압 Drop 개선 기능	133
5	응용 7	기능 사용	용하기	134
	5.1	보조 주	트파수 운전	136
	5.2	조그(Jo	og) 운전	142
		5.2.1	단자대 조그 운전 1-정방향 조그	142
		5.2.2	단자대 조그 운전2-정/역방향 조그	143
	5.3	업- 다음	운(Up-Down) 운전	144
	5.4	3-와이(어(3-Wire) 운전	146
	5.5	안전 윤	은전 모드	147
	5.6	드웰(D	well) 운전	149
	5.7	슬립(Sl	lip) 보상 운전	150
	5.8	PID 제	어	152
		5.8.1	PID 기본 운전	152
		5.8.2	Soft Fill 운전	167
		5.8.3	PID 운전 대기(Sleep) 모드	169
		5.8.4	PID 운전 전환(PID Openloop)	171
	5.9	Externa	al PID	171

Г

5.10	댐퍼 운전	181
5.11	루브리케이션(Lubrication)	182
5.12	유량 보상(Flow Compensation)	183
5.13	에너지 절감량 표시(Payback Counter)	185
5.14	펌프 클린 기능(Pump Clean)	187
5.15	기동 및 정지 기울기 조정(Start & End Ramp)	192
5.16	밸브 감속 시간 설정(Dec Valve Ramp)	193
5.17	부하 튜닝(Load Tuning)	195
5.18	레벨 검출 기능(Level Detect)	197
5.19	파이프 파손 검출 기능(Pipe Broken)	201
5.20	전동기 예열 기능(Pre-heating)	202
5.21	자동 튜닝(Auto-tuning)	205
5.22	스케쥴링 운전(Time Event Scheduling)	209
5.23	에너지 버퍼링 운전(Kinetic Energy Buffering)	221
5.24	전류 헌팅 방지 기능(Anti Hunting Regulator)	223
5.25	Fire Mode 운전	224
5.26	에너지 절약 운전	226
	5.26.1 수동 에너지 절약 운전	226
	5.26.2 자동 에너지 절약 운전	226
5.27	속도 써치(Speed Search) 운전	227
5.28	자동 재기동 설정	232
5.29	운전음 설정(캐리어 주파수 설정 변경)	235
5.30	제 2 모터 운전	237
5.31	상용 전원 전환 운전	239
5.32	냉각 팬 제어	240

5.33	입력 전원 주파수 및 전압 설정	241
5.34	파라미터 읽기, 쓰기 및 저장	242
5.35	파라미터 초기화	243
5.36	파라미터 모드 숨김	244
5.37	파라미터 변경 금지	245
5.38	변경된 파라미터 표시	246
5.39	사용자 그룹 추가	247
5.40	파라미터 간편 시작(Easy Start On)	250
5.41	컨피그(CNF) 모드 파라미터 설정	251
5.42	매크로 선택	252
5.43	타이머 설정	254
5.44	MMC(Multi-Motor Control)	255
	5.44.1 MMC 기본 시퀀스	
	5.44.2 Standby Motor(예비 모터)	
	5.44.3 Auto Change(모터 자동 절체)	
	5.44.4 인터락(Interlock)	275
	5.44.5 운전 시간 변경(Aux Motor Time Change)	
	5.44.6 레귤러 바이패스 (Regular ByPass)	281
	5.44.7 보조 모터 PID 보상 기능(Aux Motor PID Compensation)	
	5.44.8 마스터 팔로워 (Master Follower)	
5.45	다기능 출력 온/오프(On/Off) 제어	291
5.46	회생 회피	292
5.47	아날로그 출력	293
	5.47.1 전압 및 전류 아날로그 출력	293
	5.47.2 아날로그 펄스 출력	

Г

	5.48	디지털	출력	300
		5.48.1	다기능 출력 단자 및 릴레이 설정	300
		5.48.2	다기능 출력 단자 및 릴레이로 트립 출력	305
		5.48.3	다기능 출력 단자 지연 시간 설정	307
	5.49	운전 싱)태 모니터	308
	5.50	운전 시	간 모니터	310
	5.51	직렬 통	통신 재기동 기능(PowerOn Resume)	311
	5.52	Multi ke	ey를 이용하여 현재날짜/시간/요일 표기	312
6	보호 7	기능 사용	용하기	314
	6.1	모터 보	<u>보호</u>	314
		6.1.1	모터 과열 방지(ETH)	314
		6.1.2	모터 과열 센서 입력	316
		6.1.3	과부하 경보 및 트립 처리	318
		6.1.4	스톨 방지 기능 및 플럭스 제동	320
	6.2	인버터	회로 및 시퀀스 보호 기능	324
		6.2.1	입출력 결상 보호	324
		6.2.2	외부 트립 신호 처리	325
		6.2.3	인버터 과부하 보호(IOLT)	326
		6.2.4	속도 지령 상실	326
		6.2.5	제동 저항 사용률 설정	329
		6.2.6	배터리 저전압 경보	331
	6.3	경부하	트립 및 경보	331
		6.3.1	팬 고장 검출	332
		6.3.2	저전압 트립 시 동작	333
		6.3.3	운전 중 저전압 고장(Low Voltage 2)선택	334

		6.3.4	다기능 단자로 출력 차단	
		6.3.5	트립 해제	
		6.3.6	옵션 트립 시 동작	
		6.3.7	모터 없음 트립	
		6.3.8	브로큰 벨트	
	6.4	부품 -	수명 진단	
		6.4.1	Main Capacitor 수명 진단	
		6.4.2	Fan 수명 진단	
	6.5	고장/경	경보 일람표	
7	RS-48	5 통신	기능 사용하기	344
	7.1	통신 -	규격	
	7.2	통신 /	시스템 구성	
		7.2.1	통신선 연결	
		7.2.2	통신 관련 파라미터 설정	
		7.2.3	운전 지령 및 주파수 설정	
		7.2.4	지령 상실 보호 동작 설정	
	7.3	LS IN\	/ 485/Modbus-RTU 통신	
		7.3.1	가상 다기능 입력 설정	
		7.3.2	통신으로 설정한 파라미터 값 저장	
		7.3.3	LS INV 485/Modbus-RTU 통신 전체 메모리 맵	
		7.3.4	데이터 전송용 파라미터 그룹 설정	
		7.3.5	사용자/매크로 그룹을 위한 파라미터 그룹 설정	
		7.3.6	LS INV 485 프로토콜	
		7.3.7	모드버스-RTU(Modbus-RTU) 프로토콜	
		7.3.8	통신 호환 공통 영역 파라미터	

Г

		7.3.9	H100 확장 공통 영역 파라미터	367
	7.4	BACne	et 통신	382
		7.4.1	BACnet 통신 일반	382
		7.4.2	BACnet 통신 규격	382
		7.4.3	BACnet Quick Communication Start	382
		7.4.4	Protocol Implement	385
		7.4.5	Object Map	385
	7.5	Metasy	ys-N2 통신	391
		7.5.1	Metasys-N2 Quick Communication Start	391
		7.5.2	Metasys-N2 통신 규격	392
		7.5.3	Metasys-N2 프로토콜 I/O Point Map	392
8	전체 7	· 능표 '	알아두기	396
	8.1	드라이	브 그룹(DRV)	396
	8.2	기본 기	기능 그룹(BAS)	101
	8.3	확장 기	기능 그룹(ADV)	107
	8.4	제어 기	기능 그룹(CON)	112
	8.5	입력 [단자대 기능 그룹(IN)	115
	8.6	출력 [단자대 기능 그룹(OUT)	121
	8.7	통신 기	기능 그룹(COM)	127
	8.8	응용 기	기능 그룹(PID)	132
	8.9	EPID	기능 그룹(EPID)	140
	8.10	Applica	ation 1 기능 그룹(AP1)	145
	8.11	Applica	ation 2 기능 그룹(AP2)	153
	8.12	Applica	ation 3 기능 그룹(AP3)	156
	8.13	보호 기	기능 그룹(PRT)	162
	8.14	제 2 또	고터 기능 그룹(M2)	170

	8.15	트립 및	l 컨피그 모드	473
		8.15.1	트립 모드(TRP Last-x)	474
		8.15.2	컨피그 모드(CNF)	475
	8.16	Macro	그룹	478
		8.16.1	Compressor(MC1) 그룹	479
		8.16.2	Supply Fan(MC2)그룹	481
		8.16.3	Exhaust Fan(MC3) 그룹	483
		8.16.4	Cooling Tower(MC4)그룹	485
		8.16.5	Circul Pump(MC5)그룹	487
		8.16.6	VacuumPump(MC6)그룹	489
		8.16.7	Constant Torque(MC7)그룹	491
9	문제 ㅎ	배결하기		494
	9.1	트립과	경보	494
		9.1.1	트립(Trip) 항목	494
		9.1.2	경보(Warning) 항목	498
	9.2	트립 빌	날생 시 조치 사항	500
	9.3	기타 문	문제 발생 시 조치 사항	502
10 ·	유지/보	L수하기.		509
	10.1	일상/정	기 점검 항목	509
		10.1.1	일상 점검	509
		10.1.2	정기 점검(1 년 주기)	510
		10.1.3	정기 점검(2 년 주기)	513
		10.1.4	특별 점검(RTC용 배터리 교체)	513
	10.2	제품의	올바른 보관 및 폐기	514
		10.2.1	제품의 올바른 보관	514

Г

		10.2.2	제품의 올바른 폐기	515
11 기	술 ㅅ	ŀ양		516
1	1.1	입력 및	! 출력 규격	516
1	1.2	제품 싱	·세 사양	521
1	1.3	외형 치	수(IP 20 Type)	
1	1.4	주변 기	7	
1	1.5	퓨즈/리	액터 규격	531
1	1.6	단자 니	사 규격	532
1	1.7	제동 U	NIT 및 제동저항 규격	535
		11.7.1	제동 UNIT 종류	535
		11.7.2	제동 UNIT 단자 배열	536
		11.7.3	제동(DB) 유닛 및 제동저항 기본 결선도	538
		11.7.4	제동 유닛 외형도	539
		11.7.5	표시기능 설명	
		11.7.6	제동 저항규격	
1	1.8	인버터	연속 정격 전류 디레이팅	545
12 고	효율	제품 괸	반련 정보	548
1	2.1	"고효율	· 기자재"마크 인증 제품	548
1	2.2	입력 및	L 출력 규격	548
1	2.3	고효율	LSLV-H100 제품 형명	549
13 단	상 입	력 전원	년 적용	550
1	3.1	들어가기	기	550
1	3.2	Power(I	HP), 입력 전류, 출력 전류	551
1	3.3	입력 주	파수, 전압 허용 범위	551
1	3.4	배선	552	

13.5	단상	전원	적용시	제한	사항	 	 	 	 	552
색인						 	 	 	 	558

Г

설치 준비

1 설치 준비하기

이 장에서는 제품 식별 방법, 각 부분의 명칭, 제품 설치에 적합한 위치 선정 방법 및 전선 규격을 설명합니다. 제품을 올바르게 설치하여 안전하게 사용하기 위해 제품을 설치하기 전에 다음 내용을 반드시 확인하십시오.

1.1 제품 식별 방법

H100 시리즈는 모터 용량과 입력 전원에 따라 다양한 제품군을 보유하고 있습니다. 제품 규격과 제품명은 제품 명판의 정보를 통해 확인할 수 있습니다. 제품을 설치하기 전에 제품 규격이 사용 용도에 적합한지 반드시 확인하십시오. 제품의 상세 사양은 <u>521 페이지, 11.2 제품</u> 상세 사양을 참조하십시오.

참고

Г

제품을 개봉한 후 먼저 제품의 파손 여부 및 제품명을 확인하고, 제품이 파손된 경우 구입처에 문의하십시오.

참고

75/90kW, 400V 의 경우 별도의 EMC 필터 옵션이 없어도 EMC 기준(EN61800-3)을 만족함

1.2 각부 명칭 확인

분해도를 통해 제품 각 부분의 이름을 확인하십시오. 제품군에 따라 상세 이미지가 다를 수 있으니 참조하십시오.

0.75–30 kW (3 상)

Γ

37~90kW(3 상)

Γ

160~185kW(3 상)

Γ

315~400kW(3 상)

Γ

1.3 설치 환경 확인

인버터는 정밀 전자 부품으로 구성되어 있으므로, 설치 환경이 제품의 수명과 안정적인 동작에 큰 영향을 미칩니다. 다음 표에서 제품 동작에 적합한 환경을 확인한 후 설치 장소를 선택하십시오.

항목	설명					
조이 이드*	-10℃~50℃(40℃ 이상에서는 2.5%℃ 전류 Derating 됨. 50℃의 경우 정격					
구취 폰도"	전류의 75% 운전 가능)					
주위 습도	상대 습도 90% 이하(이슬 맺힘 현상이 없을 것)					
보관 온도	-20~65°C					
주위 환경	실내에 부식성 가스, 인화성 가스, 기름 찌꺼기, 먼지 등이 없을 것					
동작 고도/진동	해발 1,000m 이하, 9.8m/sec²(1.0G) 이하					
주위 기압	70~106kPa					

* 제품 표면으로부터 5 cm 떨어진 거리에서 온도를 측정할 때 기준입니다.

①주의

제품이 동작하는 동안 주위 온도가 허용 값을 넘지 않도록 주의하십시오.

1.4 설치 위치 선정

Γ

다음 사항을 고려하여 제품을 설치할 장소를 선택하십시오.

- 진동이 없고, 제품 무게를 견딜 수 있는 튼튼한 벽면에 설치하십시오.
- 제품이 동작하면 열이 발생하므로 불에 잘 타지 않는 벽면에 설치하고 주위 공간을 충분히 확보하십시오.

공기 순환이 원활한지 확인하십시오. 패널 내부에 제품을 설치할 경우 냉각 팬과 환기구의 위치에 주의하십시오. 냉각 팬이 제품 동작 시 발생하는 열을 원활하게 방출할 수 있도록 배치해야 합니다

 제품을 여러 대 설치할 경우, 옆면으로 나란히 배열(side by side) 하고 제품의 상단 커버를 반드시 제거하십시오. 상단 커버를 제거할 때에는 적합한 크기의 일자 드라이버를 사용하십시오. 30kW 이하의 인버터는 옆면으로 나란히 설치(side by Side)가 가능합니다.
 37kW 이상 인버터를 나란히 설치할 때는 아래 주의 문구에서 권장하는 공간을 확보하여 주십시오

① 주의

37kW 이상 제품에서 나란히 설치를 할 경우 아래 조건에 맞게 설치하여 주시기 바랍니다.
각 제품별 환기구를 개별 설치 : 제품간 간격은 10cm 이상 이격 필요
환기구가 없거나 하나만 설치 : 제품간 간격은 20cm 이상 이격 필요
단, 37kW 이상 제품을 나란히 설치할 때는 판넬 내부온도가 허용온도를 넘지 않도록 주의 하며, 상부로부터 이물질 유입의 위험이 없는 환경(UL Open Type)에서는 제품 설치 후
Vent cover 를 제거하여 보다 나은 냉각 효과를 기대할 수 있습니다.

 서로 다른 용량의 제품을 나란히 설치할 경우, 상위 용량을 기준으로 주위 공간을 확보하십시오.

Г

설치 준비

1.5 전선 선택

제품의 안전하고 정상적인 동작을 위해 각종 입출력 및 제어 회로 배선에는 각각의 용도와 규격에 적합한 전선을 사용해야 합니다. 다음 주의 사항에 유의하여 전선을 선택하십시오.

① 주의

- 입출력 배선에는 가급적 굵은 선을 선택하여 전압 강하율이 2% 이하가 되도록 하십시오.
- 입출력 배선에는 600V, 75℃ 규격 이상의 동 전선을 선택하십시오.
- 제어 회로 배선에는 300V, 75℃ 규격 이상의 동 전선을 선택하십시오.
- The inverters in the range between 15 and 90 kW must be grounded conveniently with fixed connections.
- The inverters in the range between 5,5kW and 11kW must be grounded with and industrial connector according to IEC 60309.
- The minimum size of the protective earthing conductor shall comply with the local safety regulations for high protective earthing conductor current equipment.
- Only one conductor per terminal should be simultaneously connected

		접지	선	입출력 배선					
제품(k	W)	2	A)A/O	n	nm²	AWG			
		mm-	AWG	R/S/T	U/V/W	R/S/T	U/V/W		
	0.75		12	1.5	1.5	16	16		
	1.5	<u>م ج</u>							
	2.2	3.5							
2 사	3.7			2.5	2.5	14	14		
30	5.5	10	10	4	4	12	12		
200V 급	7.5			6	6	10	10		
	11			10	10	8	8		
	15	14	6	16	16	6	6		
	18.5			25	22	4	4		
	0.75		14		4.5	10	40		
	1.5	0							
3상	2.2	2		1.5	1.5	10	10		
400\/ 급	3.7								
	5.5	4	12	2.5	2.5	14	14		
	7.5	4		4	2.5	12	14		

접지선 및 입출력 배선 규격

제품(kW)		접지	선	입출력 배선				
				n	nm²	AWG		
			AWG	R/S/T	U/V/W	R/S/T	U/V/W	
	11			4	4	12	12	
	15	16	9	6	6	10	10	
	18.5	10		16	10	6	8	
	22	1.4	0	16	10	6	8	
	30	14	0	25	16	4	6	
	37		4	25	25	4	4	
	45	25		25	25	4	4	
	55			50	50	1/0	1/0	
	75	20	2	70	70	1/0	1/0	
	90	38 50X2		70	70	1/0	1/0	
	110		1X2	70X2	70X2	1/0 x2 300	1/0 x2 300	
	132			95X2	95X2	2/0 x2 400	2/0 x2 400	
	160	50X2 70X2	1/0 x2	95X2	95X2	4/0 x2	4/0 x2	
	185	70x2 95x2	3/0 x2	120X2	120X2	250 x2	250 x2	
	220	05.0	250x2	150X2	150X2	300 x2	300 x2	
	250	9582	300 x2	185X2	185X2	350 x2	350 x2	
	315	60X4 150X2	2/0 x4,					
	355	70X4 150X2	3/0 x4	120X4, 400X2	120X4, 400X2	250 x4 800 x2	250 x4 800 x2	
	400	95X4 200X2	4/0 x4					
	500	120X4, 350X2	4/0 x4 750X2	185X4, 630X2	185X4, 630X2	350 x4 1500 x2	350 x4 1500 x2	

Γ

설치 준비

제어 회로 배선 규격

단자	배선 굵기 ¹⁾					
E-1	mm ²	AWG				
P1~P7/CM/VR/V1/I2/24/TI	0.33~1.25	16~22				
/AO1/AO2/CM/Q1/EG	0.33~2.0	14~22				
A1/B1/C1/A2/C2/A3/C3/A4/C 4/A5/C5	0.33~2.0	14~22				
S+,S-,SG	0.75	18				

1)쉴드타입 트위스트 페어 케이블을 사용하시기 바랍니다(Shield type twistedpair cable 권장).

2 제품 설치하기

이 장에서는 제품을 벽면 또는 패널 내부에 거치한 후 제품의 단자대에 배선하는 방법을 설명합니다. 설치 흐름도와 시스템 기본 구성도를 참조하여 작업 내용을 숙지하고 시스템 구성을 결정한 다음 올바른 순서에 따라 제품을 설치하십시오.

설치 흐름도

Г

다음 흐름도는 제품의 설치 작업을 순서대로 보여줍니다. 흐름도에 따라 제품을 설치하고 동작 상태를 확인하십시오. 각 순서에 대한 자세한 사항은 해당 페이지를 참조하십시오.

시스템 기본 구성도

Г

다음은 기본적인 시스템 구성을 보여줍니다. 제품과 주변 기기를 연결하여 시스템을 구성할 때 참조하십시오. 제품을 설치하기 전에 제품이 해당 구성에 적합한 정격을 가지고 있으며, 시스템 구성을 위한 주변 기기(제동 유닛, 리액터, 노이즈 필터 등) 및 옵션 카드가 모두 준비되었는지를 확인하십시오. 시스템에 사용할 수 있는 주변 기기에 대한 상세 사양은 529 페이지, 11.4 주변 기기를 참조하십시오.

200[V] : 0.75~18.5kW, 400[V] : 5.5~30kW

400[V]: 37~500kW

① 주의

- 사용 설명서에 제공된 그림은 설명을 위해 커버 또는 차단기를 제거한 상태일 수 있습니다. 제품을 운전할 때는 반드시 커버와 차단기 등을 모두 설치한 후 사용 설명서의 지시에 따르십시오.
- 전자 접촉기로 제품을 기동하거나 정지하지 마십시오. 제품이 파손될 수 있습니다.
- 비상 브레이크 등의 추가 안전 장치를 설치하십시오. 제품 고장으로 인해 제어가 곤란한 경우 위험한 상황이 발생할 수 있습니다.
- 전원을 입력할 때 인버터에 큰 돌입 전류가 흐르므로 차단기 선정 시 주의하십시오.
- 전원의 역률 개선이 필요하거나 배선 길이가 10m 이내 이거나 입력 전원 용량이 큰 경우(입력 전원 용량이 600[KVA] 이상이고 전원 용량이 인버터 용량의 10 배 이상인 경우)리액터를 사용해야 합니다. 리액터를 선택할 때에는 용량 및 정격에 주의하십시오(531 페이지, 11.5 퓨즈/리액터 규격 참조).

2.1 벽면 또는 패널 내부에 거치

다음 순서에 따라 제품을 벽면 또는 패널 내부에 거치하십시오. 설치 장소에 충분한 공간이 있으며, 주위에 냉각 팬의 기류를 방해하는 구조물이 없는지를 다시 한 번 확인하십시오. 제품 설치에 적합한 벽면 또는 패널을 선정하고, 제품 뒷면의 마운팅부 규격을 확인하십시오[**525 페이지, 11.3 외형 치수참조**].

- 수평계를 이용하여 설치면에 수평으로 선을 긋고, 수평선상에 마운팅 볼트 설치 위치를 정확하게 표시하십시오.
- 2 드릴을 이용하여 마운팅 볼트 설치 홀 2개를 뚫고, 마운팅 볼트를 벽면 또는 패널 벽에 설치하십시오. 제품을 거치한 후 고정해야 하므로, 마운팅 볼트를 완전히 조이지 마십시오.

200[V] : 0.75~18.5kW, 400[V] : 0.75~185kW 400[V] : 220~500kW

3 2개의 마운팅 볼트를 이용해서 제품을 벽면 또는 패널 내부에 거치하십시오. 위쪽 마운팅 볼트를 완전히 조인 다음, 아래쪽의 마운팅 볼트 2개를 설치하고 완전히 조여 제품을 고정하십시오. 제품이 설치면에 단단히 밀착해 있으며, 설치면이 제품의 무게를 안전하게 지지할 수 있는지 확인하십시오.

200[V] : 0.75~18.5kW, 400[V] : 0.75~185kW

Γ

참고

제품군에 따라 마운팅부 규격이 다르므로 제품의 외형 치수[525 페이지, 11.3 외형 치수참조]를 확인하여 거치하십시오.

① 주의

- 제품을 운반할 때에는 무게를 지탱할 수 있는 본체 프레임을 지지하십시오. 제품의 플라스틱 부위나 커버를 잡고 운반하는 경우, 커버가 빠지거나 플라스틱 부위가 부러지면서 제품이 파손되거나 작업자가 부상을 당할 수 있습니다.
- 제품 무게에 따라 올바른 방법으로 운반하십시오. 일부 용량이 큰 제품은 한 사람이 운반하기에 너무 무거울 수 있습니다. 충분한 인원 및 운반 도구를 사용하여 제품을 안전하게 운반하십시오.
- 제품을 옆으로 거치하거나 바닥에 눕혀서 거치하지 마십시오. 벽면 또는 패널 내부에 제품을 거치할 때에는 제품을 수직으로 세워서 뒷면이 설치면에 밀착하도록 하십시오.

2.2 제어보드 준비(RTC 용 배터리 장착)

H100 제품은 RTC용 배터리는 인버터 내부의 I/O 보드에 장착되어 있습니다. RTC 기능을 사용하고자 할 경우 인버터 전원이 OFF 되어 있는 상태에서 LCD 로더(키패드), 인버터 본체, 전면 커버를 분리한 후에 배터리 홀더에 꽂혀 있는 테이프를 제거하여 주십시오.

0.75~30kW(3 상)

Γ

37~90kW(3 상)

110~185kW(3 상)

220~500kW(3 상)

① 주의

- 배터리는 보드에 장착되어 있으므로 테이프 제거시 보드의 다른 부분에 손이 닿지 않도록 주의하십시요.
- 배터리는 장착시 인버터 전원이 OFF 되어 있어야 하며, 전원이 OFF 되어 있더라도 직류단 전압이 남아 있지 않는지 확인하십시오..

2.3 배선

전면 커버와 배선 브라켓, 제어 단자대 커버를 분리한 다음, 접지 규격에 따라 제품을 접지하고 전원 단자대와 제어 단자대에 전선을 연결하십시오. 배선 작업 전에 다음 주의 사항을 반드시 확인하십시오.

① 주의

- 적합한 설치 장소에 제품을 거치한 다음 배선 작업을 진행하십시오.
- 제품 내부에 전선 조각이 남지 않도록 주의하십시오. 전선 조각으로 인해 제품이 파손될 수 있습니다.
- 나사를 조일 때 규정 토크를 지키십시오. 나사가 헐겁게 조여지는 경우, 배선이 풀어지면서 단락이 발생하거나 제품이 파손될 수 있습니다. 규정 토크에 대한 자세한 사항은 532 페이지, 11.6 단자 나사 규격을 참조하십시오.
- 전선 위에 무거운 물체를 올려 두지 마십시오. 전선이 손상되어 화재가 발생하거나 작업자가 감전될 수 있습니다.
- 입출력 배선에는 가급적 굵은 선을 사용하여 전압 강하율이 2% 이하가 되도록 하십시오.
- 입출력 배선에는 600V, 75℃ 규격 이상의 동 전선을 사용하십시오.
- 제어 회로 배선에는 300V, 75℃ 규격 이상의 동 전선을 사용하십시오.
- 운전 시 문제가 발생하여 배선을 변경하는 경우 키패드(LCD 로더) 표시부와 충전 표시등이 꺼져 있는지 확인 후 배선 작업을 하십시오. 전원을 차단한 직후에는 인버터 내부의 콘덴서가 고압으로 충전되어 있으므로 위험합니다.
- The accessible connections and parts listed below are of protective class 0. It means that the protection of these circuits relies only upon basic insulation and becomes hazardous in

the event of a failure of the basic insulation. Therefore, devices connected to these circuits must provide electrical-shock protection as if the device was connected to supply mains voltage. In addition, during installation these parts must be considered, in relation with electrical-shock, as supply mains voltage circuits.

[Class 0 circuits]

ſ

- → MULTI FUNCTION INPUT : P1-P7, CM
- → ANALOG INPUT : VR, V1, I2, TI
- ➔ ANALOG OUTPUT : AO1, AO2, TO
- CONTACT : Q1, EG, 24,A1, C1, B1, A2~5, C2~5, S+, S-, SG

Step1 전면 커버/배선 브라켓 분리

전원 단자대와 제어 단자대에 배선하려면 전면 커버, 배선 브라켓을 순서대로 분리해야 합니다. 다음 순서에 따라 각각의 커버를 분리하십시오.

0.75~90kW(3 상)

1 전면 커버 고정 볼트를 풀고 전면 커버를 분리하십시오.

110~185kW(3 상)

^{0.75~90}kW(3 상)

220~500kW(3 상)

2 배선 브라켓의 양쪽 끝 손잡이를 안쪽으로 누른 상태(①)에서 배선 브라켓을 분리하십시오(②). 일부 제품(37~90kW)은 배선 브라켓이 고정 볼트로 고정되어 있습니다. 이런 경우, 먼저 고정 볼트를 풀고 배선 브라켓을 분리하십시오.

3 입출력 단자와 제어 회로 단자에 전선을 연결하십시오. 배선용 전선 규격에 대한 자세한 사항은 <u>14 페이지, 1.5 전선 선택</u>을 참조하십시오.

Step2 접지

Г

전면 커버, 배선 브라켓, 제어 단자대 커버를 분리한 후 다음 순서에 따라 접지하십시오.

1 접지 단자에 모터 용량에 맞는 접지선을 연결하십시오. 모터 용량에 맞는 접지선을 선택하려면 14 페이지, 1.5 전선 선택을 참조하십시오.

0.75~30kW(3 상)

37~90kW(3 상)

203

110~185kW(3 상)

Ground terminals

220~250kW(3 상)

315~500kW(3 상)

2 접지선을 지면에 연결하십시오.

참고

- 200V 급 제품에는 제 3 종 접지를 적용해야 하며, 접지 저항은 100Ω 이하입니다.
- 400V 급 제품에는 특별 제 3 종 접지를 적용해야 하며, 접지 저항은 10Ω 이하입니다.

\land 경고

안전한 사용을 위해 제품과 모터는 반드시 접지하십시오. 그렇지 않은 경우 작업자가 감전될 수 있습니다.

This product can cause a D.C current in the protective earthing condcutor. If a RCD or monitoring (RCM) device is used for protection, only RCD or RCM of Type B is allowed on supply side of this product.

Step3 전원 단자대 배선

다음은 전원 단자대의 단자 배치 및 연결 구성을 보여줍니다. 상세 설명을 참조하여 각 단자의 위치와 기능을 정확히 숙지한 후, 배선 작업을 수행하십시오. 전원 단자대에 배선하기 전에 사용할 전선이 규격에 적합한지 다시 한 번 확인하십시오(<u>14 페이지, 1.5 전선 선택</u> 참조).

① 주의

Г

- 단자대 나사는 규정 토크에 따라 조이십시오. 나사가 단단하게 조여지지 않으면 단락 및 제품 고장이 발생할 수 있습니다. 나사를 규정 토크 이상으로 세게 조이면 단자대 손상이나 단락 및 고장의 원인이 될 수 있습니다.
- 전원 단자대 배선에는 600V, 75℃ 규격의 동 전선을, 제어 단자대 배선에는 300V, 75℃ 규격의 동 전선을 사용하십시오.
- 전원 공급선은 반드시 R/S/T 단자에 연결해야 합니다. U/V/W 단자에 전원을 연결하면 인버터가 파손됩니다. U/V/W 단자에는 모터를 연결하십시오. 전원을 연결할 때에는 상 순서에 따라 연결할 필요가 없습니다.

Caution

- Apply rated torques to the terminal screws. Loose screws may cause short circuits and malfunctions. Tightening the screw too much may damage the terminals and cause short circuits and malfuctions.
- Use copper wires only with 600V, 75°C rating for the power terminal wiring, and 300V,

75°Crating for the control terminal wiring.

• Power supply wirings must be connected to the R, S, and T terminals. Connecting them to the U, V, W terminals causes internal damages to the inverter. Motor should be connected to the U, V, and W Terminals. Arrangement of the phase sequence is not necessary.

Attention

- Appliquer des couples de marche aux vis des bornes. Des vis desserrées peuvent provoquer des courts-circuits et des dysfonctionnements. Ne pas trop serrer la vis, car cela risque d'endommager les bornes et de provoquer des courts-circuits et des dysfonctionnements.
- Utiliser uniquement des fils de cuivre avec une valeur nominale de 600 V, 90 °C pour le câblage de la borne d'alimentation, et une valeur nominale de 300 V, 75 °C pour le câblage de la borne de commande.
- Les câblages de l'alimentation électrique doivent être connectés aux bornes R, S et T. Leur connexion aux bornes U, V et W provoque des dommages internes à l'onduleur. Le moteur doit être raccordé aux bornes U, V et W. L'arrangement de l'ordre de phase n'est pas nécessaire.

0.75~30kW(3 상)

٦

전원 단자 기호와 설명

단자 기호	명칭	설명	
R(L1) / S(L2) / T(L3)	교류 전원 입력 단자 상용 교류 전원을 연결합니다.		
$\mathbf{D}(\mathbf{x})$	DO 귀애디 저소 다기	DC 리액터를 연결합니다.	
P1(+) / P2(+)	DC 리액터 접목 단자	(DC 리액터 연결시, 단락핀은 제거)	
P2(+) / N(-)	DC 링크 단자	직류 전압 단자입니다.	
P2(+) / B	제동 저항 접속 단자	제동 저항을 연결합니다.	
U/V/W	모터 출력 단자	3상 유도 모터를 연결합니다.	

37~90kW(3 상)

Г

전원 단자 기호와 설명

단자 기호	명칭	설명
R(L1) / S(L2) / T(L3)	교류 전원 입력 단자	상용 교류 전원을 연결합니다.
P2(+) / N(-)	DC 링크 단자	직류 전압 단자입니다.
P3(+) / N(-)	제동 유닛 접속 단자	제동 유닛을 연결 합니다.
U/V/W	모터 출력 단자	3상 유도 모터를 연결합니다.

110~250kW(3 상)

٦

전원 단자 기호와 설명

단자 기호	명칭	설명
R(L1) / S(L2) / T(L3)	교류 전원 입력 단자	상용 교류 전원을 연결합니다.
В	- 사용할 수 없는 단자입니다.	
$D(\cdot) \langle N \langle \rangle$	DC 링크 단자 직류 전압 단자입니다.	
P(+) / N(-)	(또는 제동 유닛 접속 단자)	(또는 제동 유닛을 연결 합니다.)
U/V/W	모터 출력 단자	3상 유도 모터를 연결합니다.

전원 단자 기호와 설명

Г

단자 기호	명칭	설명	
R(L1) / S(L2) / T(L3) 교류 전원 입력 단자		상용 교류 전원을 연결합니다.	
P(+) / N(-)	DC 링크 단자	직류 전압 단자입니다.	
	(또는 제동 유닛 접속 단자)	(또는 제동 유닛을 연결 합니다.)	
U/V/W	모터 출력 단자	3상 유도 모터를 연결합니다.	

Wire 결선 방법

- 상기 결선도 ① 번은 기본 제공되는 볼트를 이용해서 볼트당 2 선을 연결합니다.
 LS Eelectric 에서 권장하는 방법 입니다.
- 상기 결선도 ②번은 ①번에서 기본 제공되는 볼트 2개를 제거 후에 사용자가 제품 용량에 맞는 볼트를 구하여 WIRE 2 선을 연결합니다.
 - 볼트 사이즈 : 315~400kW (M12 x L20), 500kW (M16 x L30)

참고

- 먼 거리에 있는 모터를 연결할 때는 3 심 전선을 사용하지 마십시오.
- 배선의 전체 길이는 150m 이하가 되도록 하십시오. 단, 3.7kW 이하 용량의 모터를 사용할 때에는 배선 길이가 50m 이하가 되도록 하십시오.
- 배선 길이가 긴 경우 저주파수 운전 시 전원 단자대 배선의 선간 전압 강하에 의해 모터의 토크가 떨어집니다. 또한, 배선 내부의 부유 용량 증가로 과전류 보호 기능이 동작하거나 출력 측에 연결된 기기가 오동작할 수 있습니다. 선간 전압 강하 계산식은 다음과 같습니다.

선간 전압 강하(V) = [√3 X 전선 저항(mΩ/m) X 배선 길이(m) X 전류(A)] / 1000

• 배선 길이가 길 때 선간 전압 강하를 줄이려면 굵은 전선을 사용하십시오. 또한, 캐리어 주파수를 낮추거나 마이크로 서지 필터(Micro Surge Filter)를 사용하십시오.

인버터와 모터 사이의 거리	50 m 이하	100 m 이하	100 m 이상
허용 캐리어 주파수	15 kHz 이하	5 kHz 이하	2.5 kHz 이하

⚠ 경고

배선을 포함한 모든 설치 및 동작 준비가 완료될 때까지 제품에 전원을 연결하지 마십시오. 그렇지 않은 경우 작업자가 감전될 수 있습니다.

① 주의

- 인버터의 입력 전원 배선은 R/S/T 단자에, 모터로의 출력 배선은 U/V/W 단자에 연결하십시오. 반대로 연결할 경우 제품이 파손될 수 있습니다.
- R/S/T 단자, U/V/W 단자에는 절연 캡이 있는 봉 단자를 사용하십시오.
- 제품의 입출력 측은 고조파를 발산하므로 제품 주변의 통신 기기에 전파 장해를 일으킬 수 있습니다. 이런 경우, 입력 측에 라디오 노이즈 필터, 라인 노이즈 필터를 설치하면 전파 장해를 줄일 수 있습니다.
- 제품 출력 측에 진상용 콘덴서, 서지 킬러, 라디오 노이즈 필터를 연결하지 마십시오. 트립이 발생하거나 연결한 기기가 파손될 수 있습니다.
- 제품 출력 측(모터 측) 배선에 전자 접촉기(Magnetic Contactor)를 연결하지 마십시오. 트립이 발생하거나 제품이 파손될 수 있습니다.

제품 설치

Step4 제어 단자대 배선

Γ

다음 제어 회로도는 제어 회로의 배치 및 연결 구성을 보여줍니다. 상세 설명을 참조하여 제어 회로 배선 작업을 수행하십시오. 제어 단자대에 배선하기 전에, 사용할 전선이 규격에 적합한지 다시 한 번 확인하십시오(**14 페이지, 1.5 전선 선택** 참조).

스위치 기호와 설명

스위치 기호	설명	공장 출하치
SW1	통신 종단 저항 On/Off 설정 스위치(좌: On, 우: Off)	우 : OFF
SW2	NPN/PNP 설정 스위치(좌: PNP, 우: NPN)	우: NPN
SW3	V1/T1 설정 스위치(좌: V1, 우: T1)	좌: V1
SW4	V2/Ⅰ2 단자 설정 스위치(좌: Ⅰ2, 우: V2)	좌: I2
SW5	VO/IO 단자 설정 스위치(좌: VO, 우: IO)	좌 : VO

입출력 제어 단자대 결선도

입력 단자 기호와 설명

Г

분류	단자 기호	명칭	설명
			다기능 입력으로 설정하여 사용할 수 있습니다.
			공장 출하 값은 다음과 같습니다.
			• P1: Fx
	P1~P7	다기능 입력 1~7 단자	• P2: Rx
접점 기능			• P3: BX
선택			• P4: RST
L			P5: Speed-L
			P6: Speed-M
			P7: Speed-H
	СМ	시퀀스 공통 단자	접점 입력 및 아날로그 입출력 단자의 공통
			단자입니다.
		주파수 설정용 전원 단자	아날로그 주파수 설정용 전원입니다.
아날로그 입력	VR		• 최대 출력 전압: 12V
			• 최대 출력 전류: 12mA
			• 볼륨 저항:1~10kΩ

제품 설치

분류	단자 기호	명칭	설명
	V1	주파수 설정(전압) 단자	V1 단자에 공급되는 전압에 따라 주파수를 설정합니다. • Unipolar(단극 전원): 0~10V(최대 12V) • Bipolar(양극 전원): -10~10V(최대 ±12V)
	12	주파수 설정(전류/전압) 단자	 I2 단자에 공급되는 전류량에 따라 주파수를 설정합니다. 아날로그 전압/전류 입력 단자 설정 스위치(SW4) 선택에 따라 V2 로 사용할 수 있습니다. 입력 전류: 0~20mA 최대 입력 전류: 24mA 입력 저항 249Ω
	ТІ	주파수 설정(펄스 트레인) 단자	주파수를 0~32kHz 로 설정합니다. Low Level: 0~0.8V, High Level: 3.5~12V

٦

출력/통신 단자 기호와 설명

분류	단자 기호	명칭	설명
아날로그 출력	AO	전압/전류 출력 단자	출력 주파수, 출력 전류, 출력 전압, 직류 전압 중 하나를 선택하여 출력합니다. 아날로그 전압/전류 출력 단자 설정 스위치(SW5) 선택에 따라 다음과 같이 전압 및 전류 출력을 선택할 수 있습니다. • 출력 전압: 0~10V • 최대 출력 전압/전류: 12V, 10mA • 출력 전류 범위: 0~20mA • 최대 출력 전류: 20 mA • 공장 출하 값: Frequency

제품 설치하기

분류	단자 기호	명칭	설명
	Q1	다기능(오픈 컬렉터) 출력/펄스 출력 단자	다기능 출력 신호나 펄스 출력으로서 출력 주파수, 출력 전류, 출력 전압, 직류 전압 중 하나를 선택하여 출력합니다. DC 26V, 50mA 이하 펄스 출력 단자 • 출력 주파수: 0~32kHz • 출력 전압: 0~12V
	EG	공통 단자	 오픈 컬렉터의 외부 전원 공통 접지 단자입니다.
접점 24 A1/C A2/C A3/C A3/C A5/C	24	24V 전원 단자	 최대 출력 전류: 100mA PNP 모드 단자대 전원 용도 외에 외부 24V 전원으로 사용하지 마십시오.
	A1/C1/B1	이상 신호 출력/ 다기능 출력 단자	제품의 보호 기능이 동작하여 출력을 차단할 때 신호를 출력하거나 다기능 신호를 출력합니다 (N.O. : AC250V 2A 이하, DC 30V 3A 이하 N.C. : AC250V 1A 이하, DC 30V 1A 이하). • 이상 시: A1-C1 결선(B1-C1 단선) • 정상 시: B1-C1 결선(A1-C1 단선) • 공장 출하 값: Frequency
	A2/C2 A3/C3 A4/C4 A5/C5	다기능 릴레이 출력 A 접점	인버터 운전 신호와 같은 정의된 기능을 다기능 출력 단자를 통하여 출력합니다.(AC 250V 5A 이하, DC 30V 5A 이하).
	S+/S-/SG	RS-485 신호 입력 단자	RS-485 신호 라인입니다(<u>344 페이지,</u> 7 <u>RS-485</u> 통신 기능 사용하기 참조).

Γ

참고

- 제어 회로의 배선 길이는 50m 이내로 하십시오.
- 안전 기능 설정 단자의 배선 길이는 30m 이내로 하십시오.
- LCD 로더 사용 시 배선 길이는 3m 이내로 하십시오. 배선 길이가 3m 를 초과하는 경우 신호 에러가 발생할 수 있습니다.
- 아날로그 및 디지털 신호로부터 방출되는 전자파를 차단하려면 페라이트를 사용하십시오.
- 케이블 타이 등을 이용하여 제어 배선을 정리할 때는 제품에서 15cm 이상 떨어진
 위치에 전선을 묶으십시오. 그렇지 않으면 전면 커버가 조립되지 않을 수 있습니다.

Step5 PNP/NPN 모드 설정

제어 회로의 시퀀스 입력 단자는 PNP 모드(Source)와 NPN 모드(Sink)를 모두 지원합니다. PNP/NPN 설정 스위치(SW2)로 입력 단자의 로직을 PNP 모드 또는 NPN 모드로 변경할 수 있습니다. 각 모드의 사용 방법은 다음과 같습니다.

PNP 모드(Source)

PNP/NPN 설정 스위치(SW2)를 PNP 로 설정하십시오. CM 단자는 접점 입력 신호 공통 단자이며, P24 단자는 24V 내부 전원 단자입니다. 외부 24V 전원을 사용할 때에는 외부 전원의 - 단자와 CM 단자를 연결하여 사용하십시오.

제품 설치

NPN 모드(Sink)

Γ

PNP/NPN 설정 스위치(SW2)를 NPN으로 설정하십시오. CM 단자는 접점 입력 신호 공통 단자이며, P24 는 24V 내부 전원 단자입니다. 공장 출하 시 초기 설정은 NPN 모드입니다.

Step6 비대칭 접지 전원 사용 시 EMC 필터 해제

H100 400V 급 0.75~55kW(3 상) 제품군에는 EMC 필터가 내장되어 있습니다. EMC 필터는 제품에서 발생하는 공중 전파 노이즈를 감소시켜 줍니다. EMC 필터 기능은 공장 출하 시 사용(On) 상태로 설정되어 있습니다. EMC 필터 기능을 사용하는 경우 누설 전류가 증가합니다.

🛕 위험

- 입력 전원이 델타 결선 방식과 같은 비대칭 접지 구조(corner-earthed systems)일 때에는 EMC 필터를 사용하지 마십시오. 그렇지 않은 경우 작업자가 감전될 수 있습니다.
- 커버를 열고 작업할 때에는 전원이 차단되고 10분 이상 지난 후 테스터 등으로 제품의 직류 전압이 방전된 것을 확인하십시오. 그렇지 않은 경우 작업자가 감전될 수 있습니다.

비대칭 접지 구조를 가진 전원을 사용하는 경우, 반드시 내장 EMC 필터 기능을 해제한 후 제품을 사용해야 합니다. 다음 그림에서 EMC 필터 접지 단자 위치를 확인한 후, 금속 볼트를 배선 브라켓에 부착되어 있는 플라스틱 볼트로 교체하십시오. EMC 필터 기능을 다시 사용하려면 금속 볼트로 교체하십시오. 37kW~55kW 는 커버를 제거한 뒤에 Mold Type 에 체결하면 None Ground 타입이 되며, Steal Type 에 체결하면 Ground 가 됩니다.

0.75~30kW(3 상)

Г

37~55kW(3 상)

- 75 / 90kW 제품은 별도 EMC Filter 가 제공되지 않아 해당되지 않습니다.

110~250kW(3 상)

- 1. 왼쪽 상단에 보시면 EMC 및 바리스터를 해제할 수 있는 Hole 이 있습니다.
- 2. 해당 스크류를 제거하시면 원하시는 기능을 해제할 수 있습니다.

315~500kW(3 상)

1. POWER COVER 를 제외하면 EMC Filter 보드가 보입니다.

2. EMC/바리스터를 OFF 하기 위해서는 EMC 보드에서 커넥터 제거해 주십시오.

<EMC Filter OFF, 배리스터 OFF>

Step7 제어 단자대 커버/배선 브라켓/전면 커버 조립

배선 작업과 각종 기능 설정이 완료되면 제어 단자대 커버, 배선 브라켓, 전면 커버를 순서대로 조립하십시오. 제품 군에 따라 커버 구성 및 커버의 조립 방법이 다를 수 있습니다.

2.4 설치 후 점검 사항 확인

Г

설치를 모두 마쳤다면, 제품을 동작하기 전에 다음 사항을 점검하여 제품이 올바르게 설치되었는지 확인하십시오.

항목	내용	참조	확인결과
	설치 환경이 적합한가?	<u>p.10</u>	
	운전 가능한 조건인가?	<u>p.11</u>	
	전원 전압이 제품의 입력 전압 규격에 맞는가?	<u>p.516</u>	
설치 환경	정격 출력이 적합한가?		
/입출력 전압	(특정 조건에서는 디레이팅된 정격이 적용됩니다.		
	디레이팅에 대한 자세한 사항은 <u>545 페이지,</u> 11.8	<u>p.559</u>	
	인버터 연속 정격 전류 디레이팅을 참조하십시오.)		
	제품의 전원에 배선용 차단기를 연결했는가?	<u>p.19</u>	
	배선용 차단기의 정격이 적합한가?	p.529	
	전원 배선이 제품의 입력 단자에 올바르게		
	연결되었는가?	n 20	
	(입력 전원 배선이 U/V/W 단자에 연결되면 제품이	<u>p.29</u>	
	손상되므로 주의하십시오.)		
	모터 배선이 제품의 출력 단자에 상(Phase) 순서대로		
입춬력 배선	연결되었는가?	p.29	
	(상 순서대로 연결되지 않으면 모터가 역방향으로		
	회전하므로 주의하십시오.)		
	입출력 배선 시 올바른 규격의 전선을 사용했는가?	<u>p.14</u>	
	접지선을 올바르게 설치했는가?	<u>p.27</u>	
	입출력 단자 및 접지 단자의 나사가 단단하게	p.29	
	조여졌는가?	<u>p.25</u>	
	한 대의 제품으로 여러 대의 모터를 운전하는 경우	-	
	각 모터의 과부하 보호 회로를 확인했는가?		

항목	내용	참조	확인결과
	제동 저항을 사용하는 경우, 전원 배선에 전자 접촉기를 설치하여 제품을 전원과 분리했는가?	<u>p.19</u>	
	진상용 콘덴서, 서지 킬러, 라디오 노이즈 필터가 올바르게 연결되었는가? (출력 배선에 연결하지 않도록 주의하십시오.)	<u>p.29</u>	
	제어 회로 배선 시 차폐 연선을 사용했는가?	-	
	차폐 연선의 피복선이 접지 단자에 연결되었는가?	-	
케이 친구 내내	3-와이어(3-Wire) 운전 시, 다기능 접점 입력 단자 파라미터 변경 후에 제어 회로 배선을 실시했는가?	<u>p.35</u>	
세어 외도 배신	제어 회로 배선이 올바르게 연결되었는가?	<u>p.35</u>	
	제어 회로 단자의 나사가 단단하게 조여졌는가?	<u>p.22</u>	
	제어 회로 단자의 배선 길이가 50m 이하인가?	<u>p.40</u>	
	안전 기능 설정 단자의 배선 길이가 30m 이하인가?	<u>p.40</u>	
	옵션 카드 배선이 올바르게 연결되었는가?	-	
	제품 내에 전선 부스러기나 나사가 남아 있지 않은가?	<u>p.22</u>	
	단자의 전선이 옆 단자에 붙어 있지 않은가?	-	
기타	입출력 회로의 배선과 제어 회로의 배선이 분리되었는가?	-	
	콘덴서를 2 년 이상 사용한 경우 콘덴서를 교체했는가?	-	
	입력 전원 퓨즈 및 차단기를 설치했는가?	<u>p.531</u>	
	모터 연결선은 다른 전선과 거리를 두고 설치했는가?	-	

٦

참고

차폐 연선은 외부의 전계나 자계 또는 다른 전송선에서 유도되는 전계 및 자계로부터의 영향을 차단하기 위해 선의 외부를 도전성 물질이 많은 피복으로 둘러싼 연선입니다.

2.5 시운전

Г

설치 후 점검 사항을 확인한 후 다음 순서에 따라 제품을 시운전하십시오.

- 1 제품에 전원을 공급하십시오. 키패드(LCD 로더) 표시부에 조명이 켜지는지 확인하십시오.
- 2 운전 지령 방법을 설정하십시오.
- 3 목표 주파수를 설정하고 다음 사항을 확인하십시오.
- 주파수를 V1 으로 설정한 경우 전압 입력 값 변경 시 주파수 값 변동 여부
- 주파수를 V2 로 설정한 경우 아날로그 전압/전류 입력 단자 설정 스위치(SW4)가 전압으로 선택되어 있는지 여부
- 주파수를 V2로 설정한 경우 전압 입력 값 변경 시 주파수 값 변동 여부
- 주파수를 I2 로 설정한 경우 아날로그 전압/전류 입력 단자 설정 스위치(SW4)가 전류로 선택되어 있는지 여부
- 주파수를 I2 로 설정한 경우 전류 입력 값 변경 시 주파수 값 변동 여부
- 4 가속 시간과 감속 시간을 설정하십시오.
- 5 운전 지령을 내린 후 다음 사항을 확인하십시오.
- 모터가 정방향으로 회전하는지 확인하십시오. 모터가 역방향으로 회전할 경우 아래 내용을 참조하십시오.
- 모터가 설정한 목표 주파수에 도달하며, 설정한 가/감속 시간에 맞게 동작하는지 확인하십시오.

참고

정방향 운전 지령(Fx)이 켜져 있는 경우, 모터는 부하 측에서 보았을 때 반 시계 방향으로 회전해야 합니다. 모터가 역방향으로 회전하는 경우 U 단자와 V 단자의 배선을 서로 바꾸어 연결하십시오.

Note

If the forward command (Fx) is on, the motor should rotate counterclockwise when viewed from the load side of the motor. If the motor rotates in the reverse direction, switch the cables at the U and V terminals.

Remarque

Si la commande avant (Fx) est activée, le moteur doit tourner dans le sens anti-horaire si on le regarde côté charge du moteur. Si le moteur tourne dans le sens inverse, inverser les câbles aux bornes U et V.

모터의 회전 방향 확인

- 1
 키패드로 운전 그룹(DRV)의 DRV-02 keypad Run Dir(운전 지령 방향) 코드를

 1(Forward)으로 설정하십시오.
- 2 키패드로 운전 그룹(DRV)의 DRV-06 Cmd Source 를 0(keypad)로 설정하십시오
- 3 임의의 목표 주파수를 설정하십시오.
- 4 키패드가 OFF 상태 일 경우 키패드의 [Auto] 키를 두 번 누르십시오. 정방향 운전이 시작됩니다. 키패드가 AUTO 모드 일 경우 키패드의 [Auto] 키를 한번 누르십시오. 정방향 운전이 시작됩니다.
- 5 모터 축이 아래 그림과 같이 반시계 방향(정방향)으로 회전하는지 확인하십시오.

① 주의

- 제품을 동작하기 전에 반드시 파라미터 설정을 확인하십시오. 사용하는 부하에 따라 파라미터를 변경해야 할 수도 있습니다.
- 각 단자에 정격을 초과하는 전압을 입력하지 마십시오. 제품이 파손될 수 있습니다.
- 인버터를 사용하면 모터 회전 속도를 쉽게 증가시킬 수 있기 때문에 주의하지 않으면 모터의 정격 동작 범위를 벗어날 수 있습니다. 회전 속도를 최대로 올리기 전에 모터의 정격 동작 범위를 확인하십시오.

기본 조작법

3 기본 조작법 알아두기

Γ

이 장에서는 키패드의 구성 및 조작법과 더불어 인버터의 운전에 사용되는 기능 그룹을 소개하고, 키패드를 이용한 기본 운전 방법을 설명합니다. 인버터의 각종 기능을 설정하고, 주파수나 입력 전압을 변경해 운전 지령을 내리는 등, 본격적인 사용에 들어가기 앞서 정확한 기본 조작 방법을 익히십시오.

3.1 키패드 구성 및 기능 설명

키패드는 크게 표시부와 조작부의 두 부분으로 나누어집니다. 아래 그림과 표를 참조하여 각부의 명칭 및 기능을 확인하십시오.

기본 조작법 알아두기

3.1.1 **키 기능 설명**

다음 표에서 각 키에 대한 기능 설명을 확인하십시오.

구분	표시	기능 명칭	기 능
7	MODE	모드(MODE) 키	표시 모드를 변경합니다
	PROG	프로그램(PROG) 키	설정 가능한 파라미터 코드에서 한 번 누르면 편집 상태로 들어가고 수정 후 다시 누르면 수정된 데이터를 저장합니다.
		윗 방향 키/ 아래 방향 키	코드 이동이나 데이터 값 편집 시 사용합니다.
		왼쪽 방향 키/	그룹간 이동을 할 수 있습니다.
		오른쪽 방향 키	편집 상태에서는 커서를 이동합니다.
	MULTI	다기능(MULTI) 키	사용자 코드 등록 등을 할 수 있습니다.
	ESC	취소(ESC) 키	편집 상태에서 프로그램 (PROG)키를 누르기 이전에 취소키를 누르면 이전 저장된 데이터를 그대로 사용합니다. 그룹 내에서 코드 이동 시 누르면 그룹의 맨 처음 코드로 이동합니다. 모드 이동 시 느르며 모니터 모드르 이동합니다.
	HAND 핸드(HAND) 키		HAND 운전을 선택하는 키입니다.
	OFF	오프(OFF) 키	OFF 상태 전환 혹은 고장을 리셋하는 키입니다
	AUTO	오토(AUTO) 키	AUTO 운전을 선택 운전하는 키입니다.

٦

3.1.2 표시부 구성

Г

모니터 모드 보기 화면

파라미터 변경 시 화면

모니터 모드 화면과 파라미터 변경 시 화면 명칭

번호	모니터 모드 화면 명칭	번호	파라미터 변경 시 화면 명칭
1	모드 표시	1	모드 표시
2	운전 방향 표시 Ċ 🏷	2	운전 방향 표시 🔿 🔿
3	운전 지령/ 주파수 지령	3	그룹 표시
4	다기능 키 설정	4	다기능 키 설정
5	인버터 운전 상태	5	인버터 운전 상태
6	상태 표시창 표시 항목	6	상태 표시창 표시 항목
7	모니터 모드 표시 항목 1	7	파라미터 값 표시

번호	모니터 모드 화면 명칭	번호	파라미터 변경 시 화면 명칭
8	모니터 모드 표시 항목 2	8	설정 가능 범위
9	모니터 모드 표시 항목 3	9	현재 설정 값
10	모니터 모드 커서	10	제품 출하 시 초기값
		11	코드 번호 및 이름

٦

화면 표시 기능 설명

구분	기능 명칭	표시	기능 설명
1		MON	모니터 모드 (Monitor Mode)
	모드 표시	PAR	파라미터 모드 (Parameter Mode)
		U&M	유저, 매크로 모드 (USR & Macro Mode)
		TRP	트립 모드 (Trip Mode)
		CNF	컨피그 모드 (Config Mode)
	운전 지령	К	Keypad 운전 지령
		0	Field Bus 통신 option 운전 지령
0		А	Application option 운전 지령
Ζ		E	Time Event 운전 지령
		R	내부 485 운전 지령
		Т	단자대 운전 지령
	주파수 지령	К	Keypad 주파수 지령
		V	V1 입력 주파수 지령
		Х	l2 입력 주파수 지령
3		Р	Pulse 입력 주파수 지령
		U	UP 운전 중 주파수 지령 (Up - Down 운전)
		D	DOWN 운전 중 주파수 지령 (Up-Down 운전)
		S	STOP 운전 중 주파수 지령 (Up - Down 운전)

구분	기능 명칭	표시	기능 설명
		0	FBus Option 주파수 지령
		J	Jog 주파수 지령
		R	내부 485 주파수 지령
		1 ~7	다단속 주파수 지령
	다기능 키 설정	UserGrp SelKey	파라미터 모드에서 파라미터들을 유저그룹으로
4			등록시키거나 유저 그룹 에서 파라미터 들을
			삭제하는 키
		STP	모터 정지 중
		FWD	정방향 운전 중
		REV	역방향 운전 중
		C	정방향 운전 지령 입력
		つ	역방향 운전 지령 입력
		DC	직류 (DC)출력을 낼 때
		WAN	경고 (Warning) 상태
		STL	실속 (Stall) 상태
5	인버터 운전상태 표시	SPS	속도써치 (Speed Search) 상태
5		OSS	소프트웨어 (S/W) 과전류 억제 동작 중
		OSH	하드웨어 (H/W) 과전류 억제 동작 중
		TUN	오토 튜닝 (Auto Tuning) 중
		PHT	Pre-heat 기능 동작 중
		FIR	Fire 운전 동작 중
		SLP	Sleep 운전 동작 중
		LTS	Load tuning 동작 중
		CAP	커페시터 수명진단 기능 동작 중
		PCL	펌프 클린(Pump Clean) 기능 동작 중

Γ

LSELECTRIC 53
3.1.3 메뉴 구성

H100 시리즈 인버터는 아래와 같이 5개의 표시 모드로 구성되어 있습니다. 각 모드에서는 특성에 맞는 기능 항목들을 가지고 있으며, 특히 파라미터 모드의 경우에는 인버터 운전에 필요한 기능들을 다시 그룹 단위로 표시합니다.

표시 모드 설명

Г

제품의 표시 모드는 다음과 같은 기능 그룹으로 구성되어 있습니다.

모드 명	표시	기능 설명
모니터 모드 (Monitor)	MON	인버터의 운전 상태에 대한 정보를 표시합니다. 주파수 설정 및 운전 주파수 표시, 출력 전류 및 전압 등을 모니터 할 수 있습니다.
파라미터 모드 (Parameter)	PAR	운전에 필요한 기능을 설정할 수 있습니다. 기능의 난이도 및 목적에맞게 총 14개의 그룹으로 나뉘어 있습니다.
유저, 매크로모드 (User & Macro)	U&M	사용자 그룹과 매크로 그룹을 이용하여 필요한 기능만을 그룹화 할 수 있습니다. 사용자 코드가 등록되어 있지 않거나, 매크로를 선택하지 않은 경우에는 유저, 매크로 모드가 모드키로 이동할 때 보이지 않습니다.
트립 모드 (Trip)	TRP	운전 중 고장이 발생한 경우 고장 종류와 고장 발생 시의 운전 주파수 및 전류, 전압 등에 관한 정보를 표시합니다. 과거 발생한 트립의 종류도 모니터 할 수 있습니다. 고장이 발생하지 않은 상태에서 과거 고장 이력이 없는 경우에는 트립 모드가 보이지 않습니다.
컨피그 모드 (Config)	CNF	키패드 언어 설정 및 모니터 모드 환경 선택, 인버터에 장착된 옵션 카드 종류 표시, 파라미터 초기화 및 복사 기능 등 운전 기능과는 관계없는 인버터 자체에 관한 사용환경을 설정할 수 있습니다.

파라미터 설정 모드 설명

제품의 설정 메뉴는 다음과 같은 기능 그룹으로 구성되어 있습니다.

٦

그룹	표시	설명
드라이브 그룹(Drive)	DRV	목표 주파수, 가/감속 시간 등 운전 시 필요한 기본적인 파라미터를 설정합니다. 조그 운전, 모터 용량 선정, 토크 부스트 등의 기본 운전에 대해 설정합니다.
기본 기능 그룹(Basic)	BAS	모터 파라미터, 다단속 주파수 등 기본 기능을 설정합니다.
확장 기능 그룹(Advanced)	ADV	가/감속 패턴, 주파수 제한 기능, 에너지 세이브, 회생회피 기능 등을 설정합니다.
제어 기능 그룹(Control)	CON	속도써치, KEB 관련 기능을 설정합니다.
입력 단자대 기능 그룹 (Input Terminal)	IN	다기능 디지털 입력, 아날로그 입력 등 제품의 입력 단자대 관련 기능을 설정합니다.
출력 단자대 기능 그룹 (Output Terminal)	OUT	다기능 디지털 출력, 아날로그 출력 등 제품의 출력 단자대 기능을 설정합니다.
통신 기능 그룹 (Communication)	СОМ	RS- 485 통신, USB 관련 기능, Modbus-RTU, LS Bus, Metasys N2, BACnet 과 통신 옵션 카드를 사용한 경우 관련 기능을 설정합니다.
PID 그룹(Process PID)	PID	PID 제어 관련 기능을 설정합니다.
EPI 그룹 (External PID)	EPI	External PID 제어 관련 기능을 설정합니다.
어플리케이션 그룹 1(Application 1 Group)	AP1	PID 와 관련된 Sleep Boost, SoftFill, MMC 관련 기능을 설정합니다.
어플리케이션 그룹 2(Application 2 Group)	AP2	HVAC 기능에 대하여 설정할 수 있으며, 부하 튜닝, Pump Cleanning, Pay Back Counter 기능을 설정합니다.
어플리케이션 그룹 3(Application 3 Group)	AP3	Time Event 관련 기능을 설정합니다.

그룹	표시	설명
보호 기능	PRT	모터와 인버터의 보호 기능을 설정합니다.
그룹(Protection)		
제 2 모터 기능 그룹 (Motor 2)	M2	제 2 모터 관련 기능을 설정합니다.

유저, 매크로 모드(User & Macro) 설정 모드 설명

Г

그룹명	표시	기 능 설명
사용자 그룹 (User)	USR	파라미터 모드의 각 그룹에 있는 기능 항목
		중에서 사용자가 자주 설정을 변경하거나 모니터
		할 필요가 있는 항목을 그룹화하여 표시합니다.
		키패드의 다기능 키를 이용하여 등록합니다.
	.로 그룹 cro)	부하의 종류에 따라 인버터에서 필요한 기능을
		공장 출하 시 그룹화하여 선택할 수 있도록 되어
매크로 그룹		있습니다.
(Macro)		사용자가 필요한 운전 종류를 선택하면 MC1, MC2
		또는 MC3 등으로 표시된 그룹이 나타납니다.
		컨피그 (CNF) 모드에서 선택할 수 있습니다.

LSELECTRIC | 57

3.2 키패드 사용법

제품의 기능을 사용하려면 키패드로 해당 기능이 속해 있는 그룹과 코드를 선택하여 각 기능에 맞는 파라미터 값을 설정해야 합니다. 원하는 기능을 찾으려면 <u>396 페이지, 8 전체</u> 기능표 알아두기를 참조하십시오.

해당 기능이 속한 그룹과 코드, 설정 값(파라미터) 범위를 확인한 후, 다음 설명에 따라 키패드로 그룹과 코드를 선택하고 파라미터 값을 설정하십시오.

3.2.1 표시 모드 이동

모드 키를 누를 때마다 다음과 같은 순서에 의해 모드가 변경되며 원하는 모드로 이동될 때까지 모드 키를 눌러 모드를 변경합니다. 유저/매크로 모드와 트립 모드는 제품 출하 상태에서는 보이지 않습니다. 유저/매크로가 설정되어야 유저/매크로 모드로 이동이 가능하며 트립 모드도 트립 이력이 있어야 트립 모드로 이동이 가능합니다.

기본 조작법

3.2.2 운전 모드 선택

운전 가능한 모드는 HAND 모드와 AUTO 모드가 있습니다. HAND 모드는 Keypad 를 사용하여 로컬 제어 운전을 할 수 있으며 AUTO 모드는 통신을 통하여 리모트 제어 운전을 할 수 있습니다. 또한 인버터 운전 정지인 OFF 모드가 있습니다. 인버터 운전상태 결정을 위해 세가지 모드 (HAND/AUTO/OFF) 중 하나를 선택 하십시오. 동작모드 간 전환을 위해 아래의 예시를 참조해주십시오.

HAND Mode 동작

Г

- 1. 인버터 전원을 켜면 인버터는 OFF 상태로 들어가며 OFF 모드 LED 에 불이 들어옵니다.
- 2. Parameter 모드로 이동하여 DRV-07 (frequency reference) 를 '0 (keypad)'로 설정하십시오.
- [HAND] 키를 눌러 HAND 모드 (로컬 제어모드)로 설정하십시오. HAND 모드 LED 에 불이 들어오고(OFF LED 불 꺼짐) 인버터는 운전을 시작합니다.
- 4. [OFF] 키를 눌러 인버터를 정지 시킵니다. 이때 OFF LED 에 불이 들어옵니다.

AUTO Mode 동작

- 1. OFF 모드에서 Parameter 모드로 이동하여 DRV-07 (frequency reference) 에서 주파수 설정 소스를 지정합니다.
- [AUTO] 키를 눌러 AUTO 모드로 설정합니다. AUTO 모드에서는 DRV-07에서 설정된 주파수 지령 소스의 입력 값을 기반으로 인버터가 동작합니다. 예를들어 DRV-07 가 '0 (Keypad)'으로 되어 있고 주파수 지령 소스가 설정되어 있으며 동작 지령이 ON 으로 설정되어 있다면, 인버터는 [AUTO] 키를 누르자마자 동작을 시작합니다.
- [Auto] 키를 한번 더 눌러 인버터를 정지시킵니다. AUTO 모드에서는 [AUTO]키를 통해 인버터를 운전 시키기도 하고 정지 시키기도 합니다.

참고

- Command 소스가 Keypad로 되어 있을 경우 [OFF]키를 통해 인버터를 정지시켜 AUTO모드에서 OFF모드로 전환이 가능합니다.
- 오직 AUTO 모드에서만 네트워크 통신을 통한 지령 입력이 가능합니다. 통신 지령이 설정되어 있더라도 인버터 운전을 위해서는 반드시 [AUTO.]키를 눌러야 합니다.
- 인버터는 HAND 와 AUTO 모드에서만 동작하지만 Fire Mode 기능은 OFF 상태에서도 동작합니다.

3.2.3 파라미터 표시 모드의 그룹 이동

모니터 모드에서 파라미터 모드로 변경한 상태에서 우 방향(▶) 키를 누르면 아래와 같이 표시창이 바뀌게 됩니다. 좌 방향(◀) 키를 누르면 아래와 반대 방향 순서로 표시됩니다.

٦

MONCT/K N STP 0. 0Hz Frequency 0. 00 Hz 0.00 A 0 V	- 키패드 LED 가 OFF 로 되어 있는 상태에서 왼쪽 그림과 같은 표시창이 나타납니다. 현재 모드는 모니터 모드입니다.
PARCDRV N STP 0.0Hz 00 Jump Code 9 CODE 01 Cmd Frequency 0.00 Hz 02 Keypad Run Dir Forward	- 패액되터 모드로 이동하였습니다. - 파라미터 모드의 드라이브 그룹을 표시하고 있습니다. - 우 방향(▶) 키를 1회 누릅니다.
PARCBAS N STP 0.0Hz 00 Jump Code 01 Aux Ref Src 04 Cmd 2nd Src FX/RX-1	- 기본 기능 그룹 (BAS)으로 이동하였습니다. - 우 방향 (▶) 키를 누릅니다.
PARCADV N STP 0.0Hz 00 Jump Code 01 Acc Pattern 02 Dec Pattern Linear Linear	- 확장 기능 그룹 (ADV)으로 이동하였습니다. - 우 방향 (▶) 키를 9회 누릅니다.
PARCPRT N STP 0.0Hz 00 Jump Code 05 Phase Loss Chk 06 IPO V Band 15 V	- 그룹이 순서대로 바뀌면서 보호 기능 그룹 (PRT)이 표시됩니다. - 우 방향 (▶) 키를 누릅니다.

PARCORV N STP 0. OHz	- 파라미터 모드의 드라이브 그룹
00 Jump Code 9 CODE	(DRV)으로 돌아옵니다.
01 Cmd Frequency	
0.00 Hz 02 Keypad Run Dir Forward	

Γ

3.2.4 유저/매크로 표시 모드의 그룹 이동

유저/매크로 모드로 이동하려면 사용자 코드가 등록되어 있거나 매크로 기능을 선택해야 합니다. 사용자 코드 및 매크로 그룹 등록은 사용자 그룹 추가나 매크로 그룹 추가를 참조하시기 바랍니다. 사용자 코드가 등록되어 있고, 매크로 기능을 선택한 경우 다음과 같이 그룹을 이동할 수 있습니다

MONCT/K N STP 0. OHz Frequency 0. 00 Hz 0.0 A 0 V	- 현재 모드는 모니터 모드입니다. - м 제조 키를 2회 누릅니다.
U&MCUSR N STP 0.0Hz 00 Jump Code 01 Cmd Frequency 0.00 Hz 02 Acc Time 20.0 sec	- 유저/매크로 모드 (U&M)로 이동하였습니다. - 유저 그룹 (USR)을 표시하고 있습니다. - 우 방향 (▶)키를 누릅니다.
U&MC2 N STP 0.0Hz 00 Jump Code 1 CODE 01 Freq Ref Src Keypad-1 02 Power-on Run No	- 매크로 그룹 (MC2)으로 이동하였습니다. - 우 방향 (▶)키를 누릅니다.
U&MCUSR N STP 0.0Hz 00 Jump Code 01 Cmd Frequency 0.00 Hz 02 Acc Time 20.0 sec	- 다시 유저 그룹 (USR)으로 변경됩니다.

3.2.5 코드 (기능 항목) 이동

모니터 모드의 코드 이동

Г

모니터 모드에서의 표시 항목 이동은 AUTO 운전 상태에서만 가능하며 커서가 위치한 곳에서 업 (▲), 다운 (▼)키를 누르면 주파수, 전류 등의 이름이 표시됩니다. HAND 운전이 나 OFF 상태에서는 상하 이동이 되지 않습니다.

МОNСТ/К N STP 0. OHz I 0.0 Hz 0.0 A 0 V	- AUTO 운전일 때의 모니터 모드 표시창입니다. - Hz 항목의 맨 앞에 커서가 있습니다. - 다운 (▼)키를 누릅니다
MONCT/K N STP 0.0Hz 0.0 Hz Output Current 0.0 A 0 V	- 두 번째 표시 항목이 출력 전류 (Output Current)임을 표시합니다. - 이동 후 약 2 초 동안 키를 누르지 않습니다.
MONCT/K N STP 0. OHz 0.0 Hz 0.0 A 0.0 A 0 V	- 출력 전류 (Output Current) 표시가 사라지고 두 번째 표시 항목으로 커서가 이동합니다. - 다운 (▼)키를 누릅니다
MONCT/K N STP 0.0Hz 0.0 Hz 0.0 A Output Voltage 0 V	- 세 번째 표시 항목이 출력 전압 (Output Voltage)임을 표시합니다. - 이동 후 약 2 초 간 키를 누르지 않습니다.

MONCT/K N STP 0. OHz 0.0 Hz 0.0 A 0.0 A 0 V	출력 전압 (Output Voltage) 표시가 사라지고 커서가 세 번째 표시 항목으로 이동합니다. - 업 (▲)키를 2 회 누릅니다
MONCT/K N STP 0. OHz Frequency 0. 00 Hz 0.0 A 0 V	- 첫 번째 표시 항목이 주파수 (Frequency)임을 표시합니다.
МОNCT/К N STP 0. OHz I 0.0 Hz 0.0 A 0 V	- 주파수 (Frequency) 표시가 사라지고 커서가 첫 번째 표시 항목에 있습니다.

٦

파라미터 그룹 내에서의 코드 (기능 항목) 이동

아래의 그림은 파라미터 모드의 드라이브 그룹 (DRV)과 기본 기능 그룹 (BAS)에서 업 키와 다운 키를 이용하여 코드를 이동하는 예입니다.

MONCT/K N STP 0. OHz	- 전원을 공급하면 왼쪽 그림과 같은
Frequency 0.00 Hz	표시창이 나타납니다. 현재 모드는 모니터
0.0 A	모드 (MON)입니다.
0 V	- 📶 키를 1회 누릅니다.
	- 파라미터 모드의 드라이브 그룹 (DRV)을
PARCDRV N STP 0.0Hz 00 Jump Code	표시하고 있습니다. 만약 드라이브 그룹이
9 CODE 01 Cmd Frequency	표시되지 않은 경우에는 드라이브 그룹이
0.00 Hz 02 Keypad Run Dir Forward	표시될 때까지 📶 키를 누르거나 💽
	키를 누르면 됩니다.

PARCDRV N STP 0.0Hz 00 Jump Code 9 CODE 01 Cmd Frequency 0.00 Hz 02 Keypad Run Dir	- 위에서 다운 키를 누르면 왼쪽과 같이 파라미터 모드 (PAR)의 드라이브 그룹 (DRV)에 있는 코드 번호 01 번으로 이동하게 됩니다.
Forward	- 우 방향 (▶)키를 1회 누릅니다.
PARCBAS N STP 0.0Hz 00 Jump Code 20 CODE 01 Aux Ref Src	- 파다미더 모드의 기존 기능 그룹(BAS)으로 이동합니다.
None 04 Cmd 2nd Src FX/RX-1	- 업 (▲)키 또는 다운 (▼)키를 이용하여 코드를 이동할 수 있습니다.

3.2.6 원하는 코드로 직접 이동(점프 코드)

Г

파라미터 모드와 유저/매크로, 컨피그 모드의 그룹 내에서는 각 그룹의 코드로 이동할 수 있는 점프 코드 입력 항목이 있습니다. 파라미터 모드의 특정 그룹의 첫 번째 코드인 Jump Code 를 이용하여 원하는 코드로 바로 이동(점프)이 가능합니다. 코드 번호가 큰 경우 업 키와 다운 키보다 빨리 이동할 수 있습니다. 아래 그림은 드라이브 그룹의 코드 번호 09 번으로 이동하는 예입니다

PARCORV N STP 0. OHz 01 Jump Code 16 CODE 1~99 CODE D:9 C:9	- 업 (▲) 키를 이용하여 16를 입력한 후 키를 누릅니다.
PARCDRV N STP 0.0Hz 16 Fwd Boost 2.0 % 17 Rev Boost 2.0 % 18 Base Freq 60.00 Hz	- 코드 번호 9 번의 제어 모드 (Control Mode)로 이동하게 됩니다.
PARCDRV N STP 0.0Hz 00 Jump Code 9 CODE 01 Cmd Frequency 0.00 Hz 02 Keypad Run Dir Forward	- 📧 키를 누르면 드라이브 그룹의 00 번으로 이동하게 됩니다.

3.2.7 모니터 표시 모드에서 파라미터 값 설정

모니터 모드에서 주파수를 포함해서 몇 가지 파라미터를 설정할 수 있습니다. 다음은 주파수를 설정하는 예입니다. HAND 운전 및 OFF 상태에서는 주파수 설정 창이 바로 나타나고, AUTO 운전 상태에서는 주파수 표시 항목에서 PROG/ENT 키를 한번 누르면 주파수 주파수 설정 창이 표시됩니다.

HAND/OFF 운전 상태에서의 파라미터 값 설정

MONCT/K N STP 0. OHz	- 커서가 주파수 설정 항목으로 되어
Frequency 0.0 <mark>0</mark> Hz	있는지 확인합니다.
0.0 A	- 항목의 세부 정보가 표시되고 변경할
0 V	위치 숫자에 커서가 깜박거립니다.

하는 숫자
니다.
▼)키를 이용하여
ᅣ니다.

AUTO 운전 상태에서의 파라미터 값 설정

Г

МОNСТ/К № STP 0. OHz I 0.0 Hz 0.0 A 0 V	- 커서가 주파수 설정 항목으로 되어 있는지 확인합니다. - 🎬 키를 누릅니다.
MONCT/K N STP 0.0Hz Frequency 0.00 Hz 0.0 A 0 V	- 항목의 세부 정보가 표시되고 커서가 깜박거립니다.
MONCT/K N STP 0. 0Hz Frequency 0. 00 Hz 0.0 A 0 V	- 좌 (◀) 방향키나 우(▶) 방향 키를 이용하여 변경을 하고자 하는 숫자 자리에 커서를 위치시킵니다.
MONCT/K N STP 0.0Hz Frequency 10.00 Hz 0.0 A 0 V	- 업 (▲)키 또는 다운 (▼)키를 이용하여 설정 값을 변경할 수 있습니다. - 원하는 값으로 변경을 하였으면 키를 누릅니다.

기본 조작법

3.2.8 모니터 표시 모드의 항목 변경

모니터 모드에서는 3 가지 항목을 동시에 모니터링 할 수 있습니다. 주파수를 포함한 일부 항목은 편집도 가능합니다. 표시 항목은 컨피그 모드(CNF)에서 사용자가 선택할 수 있습니다. 하지만 HAND 운전 상태(키패드의 HAND LED ON 상태)나 OFF 상태(키패드의 OFF LED ON 상태)에서는 세 개의 표시 항목 중 첫 번째 항목은 항상 지령 주파수로 고정되어 있습니다. 상단 우측의 표시 값 또한 주파수를 표시하고 있으며 정지상태에서는 지령주파수를 표시하고 운전 중인 상태에서는 현재 출력주파수를 표시합니다. 다음은 HAND 운전 상태에서의 모니터 항목을 변경하는 예입니다.

MONCT/K N STP 0. OHz Frequency 0. 00 Hz 0.0 A 0 V	- 모니터 모드의 초기 화면입니다. - 제품 출하 시에는 출력 주파수, 출력 전류, 출력 전압이 기본 모니터 항목으로 설정되어 있습니다.
CNFC N STP 0.0Hz 21 Monitor Line-1 Frequency 22 Monitor Line-2 Output Current 23 Monitor Line-3 Output Voltage	- 컨피그 모드 (CNF)의 21 ~ 23 번에서 모니터 모드에서 표시할 항목을 차례로 설정할 수 있습니다. - 다운 (▼)키를 이용하여 23 번으로 이동합니다.
CNFC N STP 0.0Hz 21 Monitor Line-1 Frequency 22 Monitor Line-2 Output Current 23 Monitor Line-3 Output Voltage	- 🐨 키를 눌러 CNF 모드의 23번 표시 항목을 확인합니다.

CNFC N STP O. OHZ 23 Monitor Line-3	- 업 (▲)키 또는 다운 (▼)키를 이용하여 커서를 출력 파워에 위치시킨 후	
2 Output Current DC 3 Output Voltage 4 Output Power	키를 키를 눌러 설정을 변경합니다.	
MONCT/K N STP 0.0Hz Frequency 0.00 Hz 0.0 A 0.0 kW	- MODE 키를 사용하여 모니터 모드로 변경한 후 세 번째 항목인 출력 파워로 변경이 되었는지 확인합니다.	

3.2.9 상태 표시부의 모니터링 항목 설정

Г

키패드 오른쪽의 위쪽 상태 표시부에서 표시하는 항목은 모니터 모드 이외에서도 항상 표시되는 항목입니다. 따라서 관심 있는 변수를 상태 표시부에 등록해 두면 모드 이동 및 변경 시에 관계없이 그 값을 항상 확인하실 수 있습니다. 이 표시 항목의 변경은 AUTO 운전 상태에서만 가능하며 HAND 운전이나 OFF 상태에서는 항상 주파수가 표시됩니다. 다음은 AUTO 운전 상태에서의 상태 표시부의 모니터링 값을 변경하는 예입니다.

MONCT/K N STP 0.0Hz 0.0 Hz 0.0 A 0 V	- 모니터 모드의 초기 화면입니다. - 제품 출하 시에는 상태 표시부에 표시하는 항목이 주파수로 되어 있습니다.
CNFC N STP 0.0Hz 20 Anytime Para Frequency 21 Monitor Line-1 Frequency 22 Monitor Line-2 Output Current	- 컨피그 모드(CNF)의 20 번 코드에서 상태 표시부에 표시할 항목을 선택합니다.

CNFC N STP 0.0Hz 20 AnyTime Para 0 Frequency DC 1 Speed 2 Output Current	- 🕬 키를 누르면 현재 설정되어 있는 값에 커서가 위치합니다.
CNFC N STP 0.0Hz 20 AnyTime Para 0 Frequency DC 1 Speed 2 Output Current	- 업 (▲)키 또는 다운 (▼)키를 이용하여 커서를 출력 전류에 위치시킨 후 키를 눌러 설정을 변경합니다.
CNFC N STP 0.0A 20 Anytime Para Outout Current 21 Monitor Line-1 Frequency 22 Monitor Line-2 Output Current	- 컨피그 모드(CNF)의 20 번 코드에 변경된 항목이 표시되며 상태 표시부 항목이 주파수에서 전류로 변경되는 것을 확인합니다.
монст/к N stp 0.0A I 0.0 Hz 0.0 A 0 V	- MODE 키를 사용하여 모니터 모드로 변경한 후에도 상태 표시부 항목이 전류로 표시되는 것을 확인합니다

٦

3.3 고장 상태 모니터링

Г

3.3.1 운전 중 고장이 발생한 경우

다음은 키패드를 통해 운전 그룹에서 출력 전류를 모니터하는 예입니다.

TRP Current Over Voltage (01) 01 Output Freq 35.10 Hz 02 Output Current 15.5 A	- 운전 중 고장이 발생하면 트립 모드로 자동 이동한 후 현재 발생한 고장의 종류를 표시합니다.
TRP Current 01 Output Freq 35.10 Hz 02 Output Current 15.5 A 03 Inverter State Steady	- 다운 (▼)키를 누르면 고장이 발생한 시점의 출력 주파수, 전류, 운전상태 등에 관한 정보를 표시합니다.
TRP Last-1 00 Trip name(1) External Trip 01 Output Freq 45.10 Hz 02 Output Current 12.0 A	- 이전에 발생한 고장이 있는 경우 우(▶) 방향 키를 누르면 이전 고장이 발생한 시점의 상태 정보가 표시됩니다.
MONCT/K N STP 0.0Hz Frequency 0.00 Hz 0.0 A 0 V	- 리셋 동작에 의해 고장 상태가 해제되면 고장 발생 전 키패드의 상태로 다시 돌아갑니다.

3.3.2 1개 이상의 고장이 동시에 발생한 경우

TRP Current Over Voltage (02) 01 Output Freq 35.10 Hz 02 Output Current 15.5 A	- 1 개 이상의 고장이 발생하면 고장 종류 옆에 동시에 발생한 고장 횟수가 표시됩니다. - 키를 누릅니다.
TRP Current 00 Trip Name (02) 01 Over Voltage 02 External Trip	- 동시에 발생한 고장 종류를 표시합니다.
MONCT/K N STP 0. OHz Frequency 0. 00 Hz 0.0 A 0 V	- 리셋 동작에 의해 고장 상태가 해제되면 고장 발생 전 키패드의 상태로 다시 돌아갑니다.

3.4 파라미터 초기화 방법

사용자가 변경한 파라미터를 제품 출하시의 상태로 초기화 할 수 있습니다. 파라미터 전체뿐만 아니라, 파라미터 모드의 그룹을 선택하여 선택한 그룹만 초기화 할 수도 있습니다.

CNFC N STP 0.0Hz 00 Jump Code 20 CODE 01 Language Sel English 02 LCD Contrast	- 🚾 키를 이용하여 컨피그 그룹 (CNF)으로 이동합니다.
CNFC N STP 0.0Hz 40 Parameter Init No 41 Changed Para View All 42 Multi-Key Sel None	- 다운 (▼) 키를 이용하여 40 번 코드로 이동합니다. - ♥♥♥ 키를 누릅니다.
CNFC N STP 0. OHz 40 Parameter Init 0 No DC 1 All Grp 2 DRV Grp	- 파라미터 초기화 항목 중 모든 그룹 (All Groups)를 선택하고 (Reve 키를 누릅니다.
CNFC N STP 0.0Hz 40 Parameter Init No 41 Changed Para View All 42 Multi-Key Sel None	- 초기화가 완료되면 다시 초기화 선택 화면으로 돌아옵니다.

Γ

기본 조작법

4 기본 기능 사용하기

이 장에서는 H100 인버터의 기본 기능을 소개합니다. 각 기본 기능에 대한 자세한 설명을 보려면 표 오른쪽의 참조 페이지를 확인하십시오.

기본 기능	사용 예	참조
운전 모드 (HAND / AUTO / OFF) 선택	운전 모드를 선택합니다	<u>p.78</u>
키패드에서 주파수 설정	키패드로 운전 주파수를 설정할 때 사용합니다.	<u>p.84</u>
단자대 전압 입력으로 주파수 설정	단자대의 전압 입력(V1, V2)으로 운전 주파수를 설정할 때 사용합니다.	<u>p.84,</u> <u>p.92</u>
단자대 전류 입력으로 주파수 설정	단자대의 전류 입력(I2)으로 운전 주파수를 설정할 때 사용합니다.	<u>p.91</u>
단자대 펄스 입력으로 주파수 설정	단자대의 펄스 주파수 입력으로 운전 주파수를 설정할 때 사용합니다.	<u>p.93</u>
RS-485 통신으로 주파수 설정	단자대의 통신 단자(S+/S-/SG)를 통해 상위 제어기(PLC 또는 PC)로 주파수를 설정할 때 사용합니다.	<u>p.94</u>
아날로그 입력으로 주파수 고정	다기능 단자 중 아날로그 주파수 고정(Analog Hold) 단자 입력으로 운전 주파수를 고정할 때 사용합니다.	<u>p.95</u>
속도 단위 변경(Hz↔Rpm)	속도 단위(Hz, Rpm)를 변경할 때 사용합니다.	<u>p.96</u>
다단속 주파수 설정	다기능 단자로 다단속 운전을 할 때 사용합니다.	<u>p.96</u>
키패드에서 운전 지령 설정	키패드의 [AUTO]키를 이용하여 운전/정지 할 때 사용합니다.	<u>p.98</u>
단자대에서 운전 지령 설정	단자대의 정방향/역방향 단자(Fx/Rx)로 운전 지령을 제어할 때 사용합니다.	<u>p.99</u>

기본 기능	사용 예	참조
RS-485 통신으로 운전 지령 설정	단자대의 통신 단자(S+/S-/SG)를 통해 상위 제어기(PLC 또는 PC)로 운전 지령을 설정할 때 사용합니다.	<u>p.100</u>
정방향/역방향 회전 금지	모터의 회전 금지 방향을 선택할 때 사용합니다.	<u>p.101</u>
전원 투입 즉시 기동	인버터 전원 공급 시 단자대 운전 지령이 온(On)되어 있으면 즉시 가속하도록 할 때 사용합니다.	<u>p.102</u>
트립 발생 후 리셋 시 재기동	트립 발생 후 초기화했을 때 단자대 운전 지령이 온(On)되어 있으면 인버터를 재기동하도록 할 때 사용합니다.	<u>p.104</u>
최대 주파수 기준으로 가/감속 시간 설정	최대 주파수를 기준으로 가/감속 시간을 설정할 때 사용합니다.	<u>p.106</u>
운전 주파수 기준으로 가/감속 시간 설정	현재 정속 운전 중인 주파수에서 다음 스텝의 목표 주파수까지 도달하는 데 걸리는 시간으로 가/감속 시간을 설정할 때 사용합니다.	<u>p.108</u>
다기능 단자로 다단 가/감속 시간 설정	다기능 단자로 다단 가/감속 시간을 설정할 때 사용합니다.	<u>p.109</u>
가/감속 시간 전환 주파수 설정	다단속 단자를 이용하지 않고 가/감속 기울기를 변경할 때 사용합니다.	<u>p.110</u>
가/감속 패턴 설정	가/감속 기울기의 패턴(리니어, S 커브)을 설정할 때 사용합니다.	<u>p.112</u>
가/감속 중지 지령 설정	다기능 단자를 이용해 가속 또는 감속을 중지하거나 정속 운전을 할 때 사용합니다.	<u>p.114</u>
리니어 V/F 패턴 운전	주파수에 관계 없이 일정한 토크가 필요한 부하에 사용합니다.	<u>p.115</u>
2 승 저감 V/F 패턴 운전	기동 특성이 2승 저감 형태의 부하(팬, 펌프 등)에 적합한 운전 패턴입니다.	<u>p.116</u>

Γ

기본 기능

기본 기능	사용 예	참조
사용자 V/F 패턴 운전	특수 모터의 V/F 패턴 및 부하 특성에 맞게 사용자가 임의로 파라미터를 설정할 때 사용합니다.	<u>p.117</u>
수동 토크 부스트	큰 기동 토크(승강 부하 등)가 필요한 운전에 사용합니다.	<u>p.118</u>
자동 토크 부스트	큰 기동 토크가 필요하거나 자동 조정 기능이 필요할 때 사용합니다.	<u>p.119</u>
모터 출력 전압 조정	입력 전원과 모터 전압 규격이 다른 경우에 모터 전압을 설정할 때 사용합니다.	<u>p.120</u>
가속 기동	일반적인 가속 방법으로, 별도의 기능 선택이 없는 경우 운전 지령이 입력되면 바로 목표 주파수까지 가속합니다.	<u>p.121</u>
직류 제동 후 기동	인버터 전원 공급이 중단된 후 부하 자체의 관성으로 모터가 계속 회전하고 있는 경우, 직류 전원 공급으로 모터를 정지시킨 다음, 다시 모터를 가속시킬 때 사용합니다.	<u>p.121</u>
감속 정지	일반적인 정지 방법으로, 별도의 기능 선택이 없는 경우 0Hz까지 감속 후 정지합니다.	<u>p.122</u>
직류 제동 후 정지	모터를 감속하는 중, 설정한 값으로 운전 주파수가 줄어 들었을 때, 직류 전원을 공급하여 모터를 정지합니다.	<u>p.123</u>
프리 런 정지	운전 지령이 오프(Off)되면 인버터는 출력을 차단하고, 부하는 관성 정지합니다.	<u>p.124</u>
파워 제동	과전압 트립 없이 최적 감속을 수행할 때 사용합니다.	<u>p.125</u>
최대/시작 주파수를 이용하여 주파수 제한	최대 주파수와 시작 주파수를 설정해 운전 주파수를 제한할 때 사용합니다.	<u>p.126</u>
주파수 상하한 값을 이용하여 주파수 제한	주파수 상/하한을 설정해 운전 주파수를 제한할 때 사용합니다.	<u>p.127</u>

٦

기본 기능	사용 예	참조
조피스 저고	모터의 기계적 공진 주파수를 피하여 동작 소음을	<u>p.128</u>
수파수 섬프	줄이고 싶을 때 사용합니다.	
제 2 운전 방법 선택	2 가지 운전 방법을 설정하여 필요에 따라 전환할	<u>p.130</u>
	때 사용합니다.	
다기능 입력 단자 제어	입력 단자의 응답성을 개선할 때 사용합니다.	<u>p.131</u>

Γ

4.1 운전 모드 (HAND / AUTO / OFF) 선택

인버터 운전 방법은 HAND 모드(로컬 제어 모드)운전과 AUTO 모드(리모트 제어 모드)운전이 있습니다. HAND 모드는 키패드를 통해 주파수 및 운전 및 정지를 할 때 사용되며, AUTO 모드는 단자대 입력 또는 통신지령을 통해 운전 및 정지를 할 때 사용됩니다.

HAND 모드 동작

HAND 모드 인버터 운전을 위해 아래 사항을 따라해주십시오.

- 1. 주파수 레퍼런스 설정을 위해 [Up], [Down], [Left], [Right] 키를 사용하세요.
- [HAND]키를 누르거나 {HAND State}로 설정한 다기능 입력 단자를 온(On) 하면, HAND LED
 에 불이 들어오고 인버터는 HAND 모드 운전을 시작합니다.
- [OFF] 키를 누르거나 {HAND State}로 설정한 다기능 입력 단자를 오프(Off) 하면, OFF LED
 에 불이 들어오며 인버터는 운전을 멈춥니다.

AUTO 모드 동작 <[DRV-08 AUTO Mode Sel]이 Enabled 일때>

AUTO 모드 인버터 운전을 위해 아래 사항을 따라해주십시오.

- 1. AUTO 모드 전환을 위해 [AUTO] 키를 눌러주세요.
- 2. 단자대 입력, 통신 또는 키패드를 통한 지령을 통해 인버터를 운전하십시오.
- 3. [OFF] 키를 누르면 OFF LED 에 불이 켜지고 인버터는 운전을 정지합니다.

AUTO 모드 동작 <[DRV-08 AUTO Mode Sel]이 Disabled 일때>

AUTO 모드 인버터 운전을 위해 아래 사항을 따라해주십시오.

- 1. AUTO 모드 전환 없이 단자대 입력, 통신, 키패드를 통한 지령으로 인버터를 운전하십시오.
- 2. [OFF] 키를 누르거나, 운전지령을 제거하면 OFF LED 에 불이 켜지고 인버터는 운전을 정지합니다.

키 이름	설명
HAND	HAND 운전 모드를 선택 운전 하는 키입니다.
OFF	OFF 상태 혹은 고장을 리셋하는 키입니다.
AUTO	AUTO 운전 모드를 선택하는 키입니다.
HAND LED	HAND 모드 운전 중일 때 HAND 키 상단의 녹색 LED 가 점등됩니다.

HAND/AUTO/OFF 키 및 LED 상태 표시

키 이름	설명
OFF LED	OFF 상태 일 경우 OFF 키 상단의 적색 LED 가점등됩니다.
	고장이 발생했을 시 적색 LED 가 점멸하며 고장이 해제되면 다시 적색
	LED 는 점등됩니다.
AUTO LED	AUTO 키 상단의 LED는 AUTO 모드로 선택되어 있고 운전 중이 아닐
	때 녹색 불이 점멸합니다. AUTO 모드로 선택되어 있고 현재 운전 중인
	경우에는 녹색 LED 가 점등됩니다.

HAND/AUTO/OFF 모드의 기본 동작

Γ

모드	기능 설명
HAND 운전 모드(로컬 제어 운전)	키패드의 HAND 키, 또는 {HAND State}로 설정한 다기능 입력 단자를 통해 운전하는 상태 입니다. 모니터 모드에서 항시 표시부에 현재 주파수가 표시되어 있고 첫 번째 모니터 표시 항목은 주파수를 설정할 수 있으며 방향(상, 하, 좌, 우) 키로 주파수 설정이 가능합니다. 이 주파수는 DRV-25(HAND Cmd Freq) 파라미터에도 표시됩니다. 운전 방향은 DRV-02(Keypad Run Dir)에 설정된 방향으로 운전됩니다. HAND 모드에서 PID 운전은 동작하지 않습니다. • BX, External Trip, 다단 가감속에 관련된 단자대 기능을 제외한 단자대 기능은 동작하지 않습니다. • Fire Mode 운전 지령이 들어 올 시 가장 우선 순위 높게 운전 합니다. • HAND 운전 모드에서는 인버터 감시, 보호 기능은 동작을 하나 일부 응용기능 사용에 있어서는 제한적입니다(PID 제어, External PID, Flow Compensation, Pump Clean, Load Tunning, Pre Heat, Scheduleing, 자동 재기동, MMC 기능은 동작하지 않습니다.).
OFF	정지상태를 표시합니다. 단, HAND 나 AUTO 운전 중에 OFF 키를 누르면 OFF LED 가 점등되고 감속 방법에 따라 바로 정지하거나 감속 정지합니다. • BX, External Trip, OFF 키에 의한 감속중 다단 가감속에 관련된 단자대 기능을 제외한 다른 단자대 기능은 동작하지 않습니다.

기본 기능

모드	기능 설명
	 Fire Mode 운전 지령이 들어 올 시 가장 우선 순위 높게 운전 합니다.
AUTO 운전 모드(리모트 제어 운전)	DRV-06(Commond Source)에서 설정된 운전 지령 소스에 따라 운전이 되며 DRV-07(Freq Ref Src)에서 설정된 주파수 지령 값에 결정 됩니다.

٦

HAND/AUTO/OFF 운전 모드 관련 기능 코드

코드 및 기능	설명						
DRV-01 Cmd Frequency	AUTO 상태에서 DRV-07 이 KeyPad 일 때 운전 주파수 설정 값입니다.						
DRV-02 KevPad	설정			기능			
Run Dir	0	For	ward	정방	향 운전 합니다.		
	1	Rev	/erse	역방	향 운전 합니다.		
	키패드	티	HAND-O	FF-AU	TO 키를 활성화/비활성화 시키는 기능 입니다.		
	Settin	igs	-		Description		
	0		Locked		키패드의 HAND-OFF-AUTO키를 비활성화		
					하고, AUTO mode로 변환 한다.		
DRV-05	1		During Run		[DRV-06 Cmd Source] 가 Fx/Rx-1, Fx/Rx-2,		
KPD H.O.A Lock					Int485, Fieldbus인 경우, 운전중에만 키패드의		
					HAND-OFF-AUTO 키를 비활성화 한다.		
	2		OFF Key Enable		During Run과 동일 조건에서 OFF키만 활성화		
					됩니다.		
	3		Unlocked		키패드의 HAND-OFF-AUTO 키를 활성화 한다.		
	AUTO	모드	드 사용 (여부를	· 설정 합니다.		
	Settings				Description		
DRV-08 AUTO	0		Enable	d	일반적인 AUTO 모드를 사용 합니다.		
Mode Sel					AUTO모드 일 때 운전지령 입력시 운전을		
					시작 합니다		
	1		Disable	ed	OFF 모드 일때도 운전지령 입력시 AUTO		

코드 및 기능	설명				
			모드로 자동 전환 되어 운전을 시작 합니다		
	키패드의 HAND 키를 활성화/비활성화 시키는 기능 입니다.				
	Settings		Description		
DRV-24 Hand	0	None	[DRV-05 KPD H.O.A Lock]의 설정을 따릅니다.		
Ney Sei	1	Disabled	[DRV-05 KPD H.O.A Lock]의 설정과 관계없이		
			HAND키가 비활성화 됩니다.		
DRV-25 HAND Cmd Freq	다른 모드에서 HAND 키를 눌렀을 경우 Monitor Line-1 에 표시되는 주파수 입니다. 즉, HAND 상태의 초기 설정 주파수 값입니다.				
OUT-31~36 Relay 1~5	AUTO State(36)을 설정하여 AUTO 모드 임을 확인 할 수 있습니다.				
OUT-31~36 Relay 1~5	HANDState(37)을 설정하여 HAND 모드 임을 확인 할 수 있습니다.				

HAND/AUTO/OFF 간 상태 변경

Γ

모드	기능 설명					
	AUT 입력 따라	O 모드에서 H 단자를 온(Or · 다음과 같이	AND 키를 누르거나, {HAND State}로 설정한 다기능 n) 하면 DRV-26 의 Hand Ref Mode 에서 설정된 값에 동작합니다.			
	설견	정	기능			
①AUTO→HAND	0 Hand Parameter		DRV-02(Keypad Run Dir)에 설정된 방향과 DRV- 25(HAND Cmd Freq)의 주파수로 운전 합니다.			
	1	Follow Auto	AUTO 모드에서의 운전 방향과 주파수로 HAND			
			모드에서도 운전이 됩니다.AUTO 모드에서 정지			
			상태 였다면 운전 방향은 정방향이며 주파수는			

기본 기능

모드	기능 설명						
	0으로 설정되고 실제 인버터는 전압이 출력되지 않습니다.						
②HAND→AUTO	HAND 운전 중 AUTO 키를 누르면 DRV-06, DRV-07 에 설정되어 있는 운전 지령 방법과 운전 주파수 지령에 따라 인버터 운전을 합니다.						
③AUTO- > OFF	AUTO 운전 중 OFF 키를 누르면 운전을 정지합니다. [DRV-08 AUTO Mode Sel]이 {Disabled} 인경우는 입력했던 운전지령을 제거 시 운전을 정지하며 OFF 모드로 전환 됩니다.						
	OFF 상태에서 AUTO 키를 누르면 DRV-06, DRV-07 에 설정되어 있는 운전 지령 방법과 운전 주파수에 따라 운전됩니다.						
④OFF-→AUTO	[DRV-08 AUTO Mode Sel]이 {Disabled} 인경우는 AUTO 키를 누르지 않아도 DRV-06 에서 설정한 운전 지령이 입력되면 DRV-07 에 설정되어 있는 운전 주파수에 따라 운전 됩니다.						
	(DRV-06 CmdSorce 가 KeyPad 로 설정되어 있을 시 AUTO 키를 한번 더 눌러야만 운전 합니다.).						
⑤HAND- > OFF	HAND 운전 중 OFF 키를 누르면 운전을 정지합니다. {HAND State}로 설정한 다기능 입력 단자가 오프(Off)로 전환되는 경우도 운전을 정지하고 OFF 모드가 됩니다. (단, [DRV-05 KPD H.O.A Lock] 설정이 {Locked}인 경우는 AUTO 모드 로 저화 되니다)						
60FF→HAND	OFF 상태에서 HAND 키를 누르거나 {HAND State}로 설정한 다기능 입력 단자를 온(On) 하면, 운전 방향은 DRV-02(Keypad Run Dir)에 설정된 방향과 모니터 화면 모드나 DRV-25(HAND Cmd Freq)에 표시된 주파수로 운전됩니다.						

٦

전원 투입 시 운전 모드

인버터의 입력 전원이 차단된 후 전원이 재 투입될 경우 인버터의 운전 상태는 [ADV-10 Power-on Run], [ADV-18 KPD Pwr-on Run], [COM-96 PowerOn Resume] 설정 상태에 따라 달라질 수 있습니다.

참고

Г

- 1 AUTO 운전모드에서 DRV-06 CMD Source 가 KeyPad 운전 Run 을 하고자 할 경우 AUTO 키를 눌러서 AUTO 모드로 들어간 후 AUTO 키를 한번 더 누르면 키패드 운전을 합니다.
- 2 AUTO/HAND 운전모드에서 고장이 발생했을 경우 다기능 입력 단자의 Reset 신호를 사용하지 않고 OFF 키를 눌렀을 때 고장이 해제되며 인버터는 OFF 상태로 변경됩니다.
- **3** AUTO 운전모드에서 고장이 발생했을 경우 다기능 입력 단자의 Reset 신호를 입력하면 고장이 해제되며 AUTO 모드를 유지합니다.

① 주의

 AUTO 모드에서 통신을 통해 운전 중 COM-96 PowerOn Resume 가 "Yes"로 설정되어 있으면 전원이 Off 된 후 다시 전원이 복귀되었을 때 별도 운전 지령이 없더라도 인버터가 운전을 시작하여 모터가 회전할 수 있으니 주의하십시오.

4.2 운전 주파수 설정

운전 주파수는 키패드나 단자대 입력(V1 전압 입력, I2 전류/전압 입력, TI 펄스 입력), RS-485 통신, 필드버스(Fieldbus) 옵션 카드를 사용하여 설정할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
				0	KeyPad-1		
DRV				1	KeyPad-2		
	7 주파수 설정 방법 Freq Ref Src 6	2	V1				
			Freq Ref Src	4	V2	0~11	
				5	12		
		주파수 설정 방법		6	Int 485		-
				7	Field Bus		
				9	Pulse		
				10 ¹	V3		
				11	13		

¹ DRV-07 의 10~11 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

4.2.1 키패드에서 운전 주파수 설정 - 직접 입력

키패드에서 주파수를 설정한 후 프로그램(PROG) 키를 누르면 주파수가 변경됩니다. DRV-7 Freq Ref Src(주파수 설정 방법) 코드에서 0(Keypad-1)을 선택한 후, DRV-01 Cmd Frequency (목표 주파수) 코드에서 원하는 주파수를 설정할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	! 값	설정 범위	단위
	01	목표 주파수	Cmd Frequency	0.00)	0.00, Low Freq~ High Freq *	Hz
DRV	07	주파수 설정 방법	Freq Ref Src	0	KeyPad- 1	0~11	-

* 운전 주파수는 DRV-20 Max Freq 에서 설정한 최대 주파수 이상으로 설정할 수 없습니다.

4.2.2 키패드에서 운전 주파수 설정 - [▲] 키와 [▼] 키 사용

키패드에서 [▲] 키와 [▼] 키를 이용하여 주파수를 변경하는 기능입니다. DRV-7 Freq Ref Src(주파수 설정 방법) 코드에서 1(Keypad-2)을 선택한 후, DRV-01 Cmd Frequency (목표 주파수) 코드에서 [▲] 키 또는 [▼] 키를 누르는 순간 주파수가 변경 됩니다. 프로그램 (PROG) 키를 누르면 메모리에 저장되고, 취소 (ESC) 키를 누르면 메모리에는 저장되지 않습니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
DRV	07	주파수 설정 방법	Freq Ref Src	1	KeyPad- 2	0~11	-
	01	목표 주파수		0.00		0.00, Low Freq~ High Freq*	Hz

* 운전 주파수는 DRV-20 Max Freq 에서 설정한 최대 주파수 이상으로 설정할 수 없습니다.

4.2.3 단자대 V1 전압 입력으로 주파수 설정

제어 단자대의 V1 단자[주파수 설정(전압) 단자]에서 전압을 입력하여 주파수를 설정합니다. 0~+10V 또는 -10~+10V 사이의 전압을 입력할 수 있습니다. -10~+10V 사이의 전압을 입력할 경우 전압 신호의 부호에 따라 모터의 회전 방향을 변경할 수 있습니다,

4.2.3.1 단자대 0~+10V 전압 입력

운전 그룹 DRV-07 Freq Ref Src(주파수 설정 방법) 코드에서 2(V1)를 선택하고 In 그룹(입력 단자대 기능 그룹) IN-06(V1 입력 극성 선택) 코드에서 0(Unipolar)을 선택하십시오. 외부 제어기의 전압 출력을 이용하거나 제어 단자대의 VR 단자(주파수 설정용 전원 단자)를 이용하여 볼륨 저항으로 V1 단자에 전압을 입력하십시오.

Г

[외부 전원 소스 연결 시]

[내부 전원 소스 연결 시]

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
DRV	07	주파수 설정 방법	Freq Ref Src	2	V1	0~11	-
	01	아날로그 최대 입력 시 주파수	Freq at 100%	최디	ㅐ 주파수	시작 주파수~최대 주파수	Hz
	05	V1 입력량 표시	V1 Monitor[V]	0.00		0.00~12.00	V
	06	V1 입력 극성 선택	V1 Polarity	0	Unipolar	0~1	-
	07	V1 입력 필터 시정 수	V1 Filter	10		0~10000	msec
INI	08	V1 입력 최소 전압	V1 volt x1	0.00		0.00~10.00	V
	09	V1 최소 전압 시 출력%	V1 Perc y1	0.00		0.00~100.00	%
	10	V1 입력 최대 전압	V1 Volt x2	10.00		0 .00~ 12.00	V
	11	V1 최대 전압 시 출력%	V1 Perc y2	100.00		0~100	%
	16	회전 방향 변경	V1 Inverting	0	No	0~1	-
	17	V1 양자화 레벨	V1 Quantizing	0.04	1	0.00*, 0.04~10.00	%

* 0 으로 설정하면 양자화(Quantizing)를 사용하지 않습니다.

단자대 0~+10V 전압 입력 시 설정 상세

코드 및 기능	설명
IN-01	제어 단자대에 볼륨 저항을 연결한 경우 최대 전압 입력 시의 운전 주파수를 설정합니다. 입력 신호 값이 IN-11 코드나 IN-15 코드에서 설정된 값의 100.00%일 때의 운전 주파수를 설정합니다. • IN-01 코드를 40.00 으로, IN-02~16 코드를 기본 값으로 설정한
Freq at 100%	경우, V1 단자에 10V를 입력하면 40.00Hz 로 운전합니다. • IN-11 코드를 50.00 으로, IN-01~16 코드를 기본 값으로 설정한 경우, V1 단자에 10V를 입력하면 30.00Hz(최대 60Hz 의 50%)로 운전합니다.
IN-05 V1 Monitor[V]	V1 단자에 입력된 전압의 크기를 확인합니다.
IN-07 V1 Filter	저역 통과 필터(Low-pass Filter)이며, 노이즈가 많아 주파수 설정 값의 변동이 큰 경우 사용합니다. 필터를 사용하면 아날로그 신호를 걸러 깨끗한 입력 신호만 통과시킵니다. 필터 시정 수를 크게 설정할수록 주파수 변동폭을 줄일 수 있지만 시간 t가 늦어지므로 응답성이 떨어집니다. 설정 값인 시간 t는 외부 전원 소스로부터의 전압이 스텝으로 입력되었을 때 인버터 내부에서 설정 주파수의 약 63%까지 도달하는 데 걸리는 시간입니다.
VIFILLEI	V1 입력 외부 전원 소스 실정 주파수 100% 63% V1 Filter(t)

٦

코드 및 기능	설명				
IN-08 V1 volt x1~ IN-11 V1 Perc y2	입력 전압 크기에 따른 출력 주파수의 기울기와 오프셋 값 등을 설정합니다. ^{설정주파수} IN-11 IN-09 IN-09 IN-08 IN-10 V1입력				
IN-16 V1 Inverting	V1 의 입력 값을 반전시키는 기능입니다. 1(Yes)로 설정하면 현재 회전 방향의 반대 방향으로 회전합니다.				
IN-17 V1 Quantizing (양자화)	방향의 반대 방향으로 회전합니다. V1 단자의 아날로그 입력 신호에 노이즈가 많은 경우에 사용합니다. 일정한 간격으로 입력 신호의 높이(값)를 측정(양자화)하여 주파수를 출력합니다. 따라서 출력 주파수의 세밀한 조정 능력(분해능)은 떨어지지만 노이즈는 감소하므로, 노이즈에 민감한 시스템에서 사용합니다. 양자화 설정 값은 아날로그 최대 입력 값의 백분율이므로, 아날로그 최대 입력 값 10V, 최대 주파수 60Hz 에서 양자화 값으로 1%를 설정한 경우, 0.1V 간격으로 0.6Hz 씩 출력 주파수가 변동됩니다. 입력 신호 값 변동(높낮이의 흔들림)이 운전 주파수에 주는 영향을 줄이기 위해, 입력 신호의 값(높이)이 올라갈 때와 내려갈 때의 출력 주파수는 각각 다르게 적용됩니다. 입력 신호 값이 증가할 때에는 양자화 값의 3/4 에 해당하는 높이가 되면 출력 주파수가 변화하기 시작하며, 그 다음부터는 출력 주파수가 양자화 값에 맞게 증가합니다. 반대로 입력 신호 값이 감소할 때에는 양자화 값의 1/4 에 해당하는 높이가 되면 출력 주파수가 감소하기 시작합니다. 저역 통과 필터(IN-07)를 이용해도 노이즈를 감소시킬 수 있으나, 값을				

Γ

4.2.3.2 단자대 -10~+10V 전압 입력

운전 그룹 Frq(주파수 설정 방법) 코드에서 2(V1)를 선택한 후, IN 그룹(입력 단자대 기능 그룹) 06(V1 입력 극성 선택) 코드에서 1(Bipolar)을 선택하십시오. 외부 제어기의 전압 출력을 이용하여 V1 단자[주파수 설정(전압) 단자]에 전압을 입력하십시오.

[V1 단자 -10~+10V 전압 설정]

[양방향 전압 입력 및 출력 주파수]

그룹	코드	명칭	LCD 표시	설경	덩 값	설정 범위	단위
DRV	07	주파수 설정 방법	Freq Ref Src	2	V1	0~11	-
	01	아날로그 최대 입력 시 주파수	Freq at 100%	60.00		0~최대 주파수	Hz
	05	V1 입력량 표시	V1 Monitor	0.0	0	-12.00~12.00V	V
	06	V1 입력 극성 선택	V1 Polarity	1	0~1	0~1	-
INI	12	V1 입력 최소 전압	V1- volt x1	0.0	0	-10.00~0.00V	V
IIN	13	V1 최소 전압 시 출력%	V1- Perc y1	0.00		-100.00~0.00%	%
	14	V1 입력 최대 전압	V1- Volt x2	-10.00		-12.00 ~0.00V	V
	15	V1 최대 전압 시 출력%	V1- Perc y2	-10	0.00	-100.00~0.00%	%

운전 지령과 전압 입력에 따른 모터의 회전 방향

Γ

으저 지령	전압 입력			
	0~10V	-10~0V		
FWD	정방향	역방향		
REV	역방향	정방향		
단자대 -10~+10V 전압 입력 시 설정 상세

4.2.3.3 단자대 I2 전류 입력

Г

제어 단자대의 SW4(아날로그 전압/전류 입력 단자 설정 스위치)를 전류 입력으로 설정하면 I2 단자에 전류를 입력하여 주파수를 설정할 수 있습니다. DRV-07 Freq Ref Set(주파수 설정 방법) 코드에서 5(I2)를 선택한 후, 단자대의 I2 단자에 0~20mA 사이의 전류를 입력하십시오

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
DRV	07	주파수 설정 방법	Freq Ref Src	5	12	0~11	-
	01 아날로그 최대 입력 시 주파수 F		Freq at 100%	60.00		0~최대 주파수	
	50	l2 입력량 표시	I2 Monitor	0.00		0.00~24.00	mA
	52	l2 입력 필터 시정 수	I2 Filter	10		0~10000	ms
	53	l2 입력 최소 전류	I2 Curr x1	4.00		0.00~20.00	mA
IN	54	l2 최소 전류 시 출력%	l2 Perc y1	I2 Perc y1 0.00		0~100	%
	55	l2 입력 최대 전류	l2 Curr x2	Curr x2 20.00		0.00~24.00	mA
	56	l2 최대 전류 시 출력%	l2 Perc y2	100.	00	0.00~100.00	%
	61	l2 회전 방향 변경	I2 Inverting	0	No	0~1	-
	62	l2 양자화 레벨	I2 Quantizing	0.04		0.00*, 0.04~10.00	%

* 0 으로 설정하면 양자화(Quantizing)를 사용하지 않습니다.

단자대 12 전류 입력 시 설정 상세

코드 및 기능	설명
	최대 전류 입력 시의 운전 주파수를 설정합니다. IN-55 코드에서
	설정된 값이 100%일 때의 운전 주파수를 설정합니다.
IN-01 Freq at	• IN-01 코드를 40.00, IN-53~56 코드를 기본 값으로 설정한 경우, I2
100%	단자에 20mA를 입력하면 40.00Hz로 운전합니다.
	• IN-56 코드를 50.00, IN-01, 53~55 코드를 기본 값으로 설정한
	경우 ,I2 단자에 20mA를 입력하면 30.00Hz를 운전합니다.
IN-50 I2 Monitor	I2 단자에 입력된 전류의 크기를 확인합니다.
	설정된 시간은 전류가 스텝으로 입력되었을 때 인버터 내부에서 스텝
IIN-52 IZ FIITEr	입력된 I2 값의 약 63%까지 도달하는 데 걸리는 시간입니다.

기본 기능

4.2.4 단자대 12 전압 입력으로 주파수 설정

제어 단자대의 SW4(아날로그 전압/전류 입력 단자 설정 스위치)를 전압 입력으로 설정하면 I2(V2) 단자에 전압을 입력하여 주파수를 설정할 수 있습니다. 단자대의 I2 단자가 전류 입력(I)으로 설정되어 있으면 IN-35~47 코드는 나타나지 않습니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
DRV	07	주파수 설정 방법	Freq Ref Src	4 V2	0~11	-
	35	V2 입력량 표시	V2 Monitor	0.00	0.00~12.00	V
	37	V2 입력 필터 시정 수	V2 Filter	10	0~10000	msec
	38	V2 입력 최소 전압	V2 Volt x1 0.00 0		0.00~10.00	V
	39	V2 최소 전압 시	$\sqrt{2}$ Perc v1	0.00	0.00-100.00	0/_
IN		출력%	vzreicyi	0.00	0.00~100.00	70
	40	V2 입력 최대 전압	V2 Volt x2	10.00	0.00~10.00	V
	<i>1</i> 1	V2 최대 전압 시	$1/2$ Perc $\sqrt{2}$	100.00	0.00, 100,00	%
	T 1	출력%	VZ1 610 yZ	100.00	0.00~100.00	70
	46	V2 회전 방향 변경	V2 Inverting	0 No	0~1	-
	47	V2 양자화 레벨	V2 Quantizing	0.04	0.00*, 0.04~10.00	%

* 0 으로 설정하면 양자화(Quantizing)를 사용하지 않습니다.

기본 기능

4.2.5 단자대 TI 펄스 입력으로 주파수 설정

Г

DRV 그룹의 주파수 설정 코드 DRV-07 에서 9(Pulse)를 선택하고 단자대의 TI 단자에 0~32.00kHz 사이의 펄스 주파수를 입력하여 운전 주파수를 설정할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
DRV	07	주파수 설정 방법	Freq Ref Src	9	Pulse	0~11	-
	01	아날로그 최대 입력 시	Frog at 100%	60.00		0.00~최대	<u>Ц-</u>
	01	주파수	Fleg at 100%			주파수	
	91	펄스 입력량 표시	TI Monitor	0.00	D	0.00~50.00	kHz
	92	TI 입력 필터 시정 수	TI Filter 10		0~9999	msec	
INI	93	TI 입력 최소 펄스	TI Pls x1 0.00		0.00~32.00	kHz	
IIN	94	TI 최소 펄스 시 출력%	TI Perc y1	0.00	C	0.00~100.00	%
	95	TI 입력 최대 펄스	TI Pls x2	32.0	00	0.00~32.00	kHz
	96	TI 최대 펄스 시 출력%	TI Perc y2	100	.00	0.00~100.00	%
	97	회전 방향 변경	TI Inverting	0	No	0~1	-
	98	TI 양자화 레벨	TI Quantizing	0.04	4	0.00*, 0.04~10.00	%

* 0 으로 설정하면 양자화(Quantizing)를 사용하지 않습니다.

단자대 TI 펄스 입력 시 설정 상세

코드 및 기능	설명
	최대 펄스 주파수 입력 시의 운전 주파수를 설정합니다.IN-96 코드에서
	설정된 값이 100%일 때의 운전 주파수를 설정합니다.
IN-01 Freq at	• IN-01 코드를 40.00, IN-93~96 코드를 기본 값으로 설정한 경우, TI
100%	단자에 32kHz 를 입력하면 40.00Hz 로 운전합니다.
	• IN-96 코드를 50.00, IN-01, IN-93~95 코드를 기본 값으로 설정한 경우,
	TI 단자에 32kHz 를 입력하면 30.00Hz 로 운전합니다.
IN-91 TI Monitor	TI 단자에 입력된 펄스 주파수를 확인합니다.
	설정된 시간은 펄스 주파수가 스텝으로 입력되었을 때 인버터 내부에서
IIN-92 II Fliter	스텝 입력된 펄스 입력 값의 약 63%까지 도달하는 데 걸리는 시간입니다.

4.2.6 RS-485 통신으로 주파수 설정

DRV 그룹 주파수 설정 코드 DRV-07 에서 6(Int 485)을 선택하십시오. 제어 단자대의 S+/S-/SG 단자(RS-485 신호 입력 단자) 를 이용하면 상위 제어기(PLC 또는 PC)와의 통신으로 인버터를 제어할 수 있습니다. 자세한 사항은 <u>344 페이지, 7 RS-485 통신 기능 사용하기</u>를 참조하십시오.

그룹	코드	명칭	LCD 표시	설정	니 값	설정 범위	단위
DRV	07	주파수 설정 방법	Freq Ref Src	6	Int 485	0~11	-
	04	네파워 트시 이미디 며		-		1~	-
	01	내상영 동신 인머터 ID	Int485 St ID		1	MaxComID ²	
COM		내장형 통신 프로토콜	Int485 Proto	0	ModBus RTU		
00111	02			2	LS INV 485	0.6	-
	02			4	BACnet	0~0	
				5	Metasys-N2		

² MaxComID는 AP1-40의 설정이 (4:Serve Drv)로 설정되는경우는 8,COM-02의 설정이 (4: BACnet)으로 설정되는 경우는 127, 그외의 경우는 250 입니다.

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
				63	ModBus		
				0	Master		
	03	내장형 통시 소도	Int485	з	2 0600 bpc	0~8	_
	00		BaudR	5	5000 bp3	00	
		내장형 통신 프레임 설정	Int485 Mode	0	D8/PN/S1		
	04			1	D8/PN/S2	0.2	
04	04			2	D8/PE/S1	0~3	-
				3	D8/PO/S1		

4.3 아날로그 입력으로 주파수 고정

Г

제어 단자대의 아날로그 입력을 통해 주파수를 설정하는 경우, 다기능 입력 단자 중 아날로그 주파수 고정(Analog Hold)으로 선택된 단자에 신호가 입력되면 운전 주파수가 현재 출력 중인 주파수 값으로 고정됩니다.

기본기능

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
				0	Keypad-1		
				1	Keypad-2		
				Z 1			-
		주파수 설정 방법	Freq Ref Src	4 5	12	0~11	
DRV	07			6	Int 485		
				7	Fied Bus		
				9	Pulse		
				10 ⁴	V2		
				11	13		
IN	65~71	Px 단자 기능 설정	Px Define(Px: P1~P7)	23	Analog Hold	0~55	-

³ COM-02 의 (6: ModBus Master)파라메터는 AP1-40 AP1-40 의 설정이 2~3 으로 설정된경우 자동으로 선택되는 파라메터로서 사용자가 임의로 선택할수 없음.

⁴ DRV-07 의 10~11 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

4.4 속도 단위 변경(Hz↔Rpm)

DRV 그룹 속도 단위 선택 코드 DRV-21 을 0(Hz Display) 또는 1(Rpm Display)로 선택하여 속도 단위를 변경할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
עםח	21	소드 다이 서태	Uz/Prom Sol	0	Hz Display	0.1	
DRV	21	국도 한뒤 선택		1	Rpm Display	0~1	-

4.5 다단속 주파수 설정

Px 단자(다기능 입력 단자)에 각각 주파수를 설정해 다단속 운전을 수행할 수 있습니다. 이때, 0 속 주파수는 DRV 그룹의 주파수 설정 방법 코드 DRV-07 에서 선택한 주파수 설정 방법을 이용하며, 7(Speed-L), 8(Speed-M), 9(Speed-H)는 2 진수 명령어로 인식되어 BAS 그룹 50~56(다단속 주파수 1~7) 코드에서 설정된 주파수를 선택하여 운전합니다.

그룹	코드	명칭	LCD 표시	설	정 값	설정 범위	단위
BAS	50~56	다단속 주파수1~7	Step Freq - 1~7	-		0.00, Low Freq~ High Freq*	Hz
		Px 단자 기능 설정	Py Dofino/Py:	7	Speed-L		-
	65~71			8	Speed-M	0~55	-
INI			F1~F7)	9	Speed-H		-
		다단 지령 지연				4 5000	
	89	시간		1		1~3000	ms

다단속 주파수 설정 상세

Г

코드 및 기능	설명				
BAS 그룹 50~56	다단속 주파수	1~7을 설정합	니다.		
IN-65~71 Px Define	P1~P7 단자 중 코드에서 7(Sp 설정합니다. P5/P6/P7 단자 [AUTO] 운전 ! 	통 다단속 입력 eed-L), 8(Spee 로드 상태에서 1속 ^{2속} 34 기속 ³⁴	으로 사용할 [ed-M), 9(Speed d-L/Speed-M/S 다단속 운전	단자를 선택한 I-H) 중 하나를 Speed-H로 설정 시 다음과 같이	후, IN-65~71 각각 성한 경우, 동작합니다.
	속도	Fx/Rx	P7	P6	P5
	0	\checkmark	-	-	-
	1	\checkmark	-	-	\checkmark
	2	✓	-	✓	-
	3	√	-	✓	✓
	4	√	✓ ✓	-	-
	5	√	 ✓ 	-	✓
	0 7	▼ ✓	✓ ✓	✓ ✓	-
		MI1			

코드 및 기능	설명
	인버터 내부에서 단자대 입력을 확인하는 시간을 설정합니다.
IN-89 InCheck	IN-89 코드를 100ms로 설정한 후 P6 단자에 주파수를 입력하면
Time	100ms 동안 다른 단자대 입력 여부를 확인합니다. 100ms가 지나면 P6
	단자에 해당하는 주파수로 가/감속합니다.

4.6 운전 지령 방법 설정

[AUTO] 운전 모드 상태에서의 운전 지령 방법입니다. 이 기능을 사용하면 운전 지령에 사용할 입력 장치를 선택할 수 있습니다. 입력 장치는 키패드와 다기능 입력 단자, RS-485 통신, 필드버스(Fieldbus) 옵션 카드 중에서 선택할 수 있습니다.

그룹	코드	명칭	LCD 표시	설경	정 값	설정 범위	단위
				0	Keypad		
		운전 지령 방법		1	Fx/Rx-1		
	06		Cred Source	2	Fx/Rx-2	-0~5	-
DRV			Cina Source	3	Int 485		
				4	Field Bus		
				5	Time Event		

4.6.1 키패드에서 운전 지령 설정

키패드로 운전 지령을 입력하려면 먼저 [AUTO]키를 눌러 AUTO 운전 지령 모드로 변경합니다. DRV 그룹 운전 지령 방법 코드 DRV-06 에서 0(Keypad)을 선택하고 DRV-02 Keypad Run Dir 에서 운전 방향을 선택하십시오. 운전 지령 입력 방식을 키패드로 설정했으므로 키패드의 [AUTO] 키를 눌러 운전을 시작하고, [AUTO] 키를 다시 누르면 운전을 중단합니다. 키패드 운전 중 [OFF]키를 눌러도 인버터는 정지하며 운전 모드 상태가 OFF 상태로 변경됩니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
DRV	06	운전 지령 방법	Cmd Source	0	KeyPad	0~5	-

4.6.2 단자대에서 운전 지령 설정(정/역방향 단자 지정)

다기능 단자대로 운전 지령을 입력하려면 DRV 그룹 운전 지령 방법 코드 DRV-06 에서 1(Fx/Rx-1)을 선택하십시오. P1~P7 다기능 입력 단자 중 정방향(Fx)과 역방향(Rx) 운전 지령으로 사용할 단자를 선택한 후, IN 그룹의 입력 단자대 기능 IN-65~71(Px 단자 기능 설정) 코드에서 1(Fx)과 2(Rx)를 각각 선택하십시오. 이때, Fx 단자와 Rx 단자가 동시에 온(On)되거나 오프(Off)되면 운전을 중단합니다.

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
		키패드 운전		0	Reverse		
IN	02	회전방향	Keypad Run Dir	1	Forward	0~1	-
DRV	06	운전 지령 방법	Cmd Source	1	Fx/Rx-1	0~5	-
		Px 단자 기능	Py Define(Py: P1.	1	Fx		
IN	65~71	설정	P7)	2	Rx	0~55	-

정/역방향 단자 지정 설정 상세

Г

코드 및 기능	설명
DRV-06Cmd Source	1(Fx/Rx-1)을 선택합니다.
IN-65~71 Px	정방향(Fx) 운전 지령으로 사용할 단자를 선택합니다.
Define	역방향(Rx) 운전 지령으로 사용할 단자를 선택합니다.

4.6.3 단자대에서 운전 지령 설정(지령/회전 방향 단자 지정)

DRV 그룹의 운전 지령 방법 코드 DRV-06 에서 2(Fx/Rx-2)를 선택하십시오. P1~P7 다기능 입력 단자 중 운전 지령과 회전 방향(Fx/Rx) 지령으로 사용할 단자를 선택한 후, IN 그룹의 입력 단자대 기능 설정 코드 IN-65~71(Px 단자 기능 설정)에서 1(Fx)과 2(Rx)를 각각 선택하십시오. 이제 Fx 단자는 운전 지령 명령 단자로, Rx 단자는 회전 방향 선택(On: Rx, Off: Fx) 단자로 사용할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
DRV	06	운전 지령 방법	Cmd Source	2	Fx/Rx-2	0~5	-
IN	65~71	Px 단자 기능 설정	Px Define (Px: P1 ~ P7)	1 2	Fx Rx	0~55	-

지령/회전 방향 단자 지정 설정 상세

코드 및 기능	설명
DRV-06 Cmd Source	2(Fx/Rx-2)를 선택합니다.
IN-65~71 Px	운전 지령(Fx)으로 사용할 단자를 선택합니다.
Define	방향 지령(Rx)으로 사용할 단자를 선택합니다.

4.6.4 RS-485 통신으로 운전 지령 설정

RS-485 통신으로 운전 지령을 입력하려면 DRV 그룹의 운전 지령 방법 코드 DRV-06 에서 3(Int 485)을 선택하십시오. 제어 단자대의 S+/S-(RS-485 신호 입력 단자) 단자를 이용하여 상위 제어기(PLC 또는 PC)로 인버터를 제어할 수 있습니다. 자세한 사항은 <u>344 페이지, 7 RS-</u> 485 통신 기능 사용하기를 참조하십시오.

그룹	코드	명칭	LCD 표시		설정 값	설정 범위	단위
DRV	06	운전 지령 방법	Cmd Source	3	Int 485	0~5	-
0014	01	내장형 통신 인버터 ID	Int485 St ID	1		1~ MaxComID ⁵	-
	02	내장형 통신 프로토콜	Int485 Proto	0	ModBus RTU	0~6	•
COM	03	내장형 통신 속도	Int485 BaudR	3	9600 bps	0~8	ŀ
	04	내장형 통신 프레임 설정	Int485 Mode	0	D8 / PN / S1	0~3	-

음 / _국 |

4.7 정방향/역방향 회전 금지

Г

이 기능을 사용하면 모터의 회전 금지 방향을 설정해 한쪽 방향으로만 운전하도록 할 수 있습니다. 역방향 회전 금지가 설정되어 있는 경우, 단자대 운전에서 정방향 운전 중, 역방향 운전을 하고자 FX 단자를 OFF 하고 RX 단자대를 ON 하면 0Hz 까지 감속 하며 인버터는 0 속 운전 상태를 유지합니다.

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
ADV	09	회전 금지 방향 선택		0	None		
			Run Prevent	1 Forward Prev 0~2	0~2	-	
				2	Reverse Prev		

정방향/역방향 회전 금지 설정 상세

⁵ MaxComID는 AP1-40의 설정이 (4: Serve Drv)로 설정되는경우는 8, COM-02의 설정이 (4: BACnet)으로 설정되는 경우는 127, 그외의 경우는 250 입니다.

코드 및 기능	설명				
	회전 🗄	금지 방향을 선택합니	다.		
	설정		기능		
ADV-09 Run Prevent	0	None	회전 금지 방향을 설정하지 않습니다.		
	1 Forward Prev		정방향 회전을 금지합니다.		
	2	Reverse Prev	역방향 회전을 금지합니다.		

4.8 전원 투입 즉시 기동(Power-on Run)

다음과 같은 조건에서 전원 투입 후 즉시 운전을 시작합니다.

키패드 운전 지령 사용 시

[AVD-18 KPD Pwr-on Run]을 Yes 로 설정한 경우 입력 전원 차단 시점에 키패드 운전 지령 (HAND 키, AUTO 키)에 의해 운전되고 있었다면, 복전 후 키패드 운전 지령이 없는 경우에도 자동으로 운전을 재개합니다.

그룹	코드	명칭	LCD 표시		설정 값	설정 범위	단위
DRV	06	운전 지령 방법	Cmd Source	0, x	AUTO 키 운전 : {0: Keypad}로 설정 HAND 키 운전 : 관계없음	0~5	-
ADV	18	전원 투입 시 기동(Keypad)	KPD Pwr- on Run	1	Yes	0~1	-

단자대 운전 지령 사용 시

[AVD-10 Power-on Run]을 Yes 로 설정한 경우 입력 전원 차단 시점에 AUTO 모드였다면, 복전 시 단자대 운전 지령 입력 상태에 따라 인버터가 즉시 기동 합니다. DRV-06 에서 1(Fx/Rx-1) 또는 2 (Fx/Rx-2)가 선택되어 있는 경우 이 기능을 사용할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
DRV	06	운전 지령 방법	Cmd Source	1, 2	Fx/Rx-1 또는 Fx/Rx-2	0~5	-
ADV	10	전원 투입 시 기동	Power-on Run	1	Yes	0~1	-

통신 운전 지령 시

Г

DRV 그룹 운전 지령 방법으로 DRV-06 에서 3(Int 485) 또는 4 (Field Bus)가 선택되어 있는 경우 입력 전원이 차단 된 후 복전이 될 시에 전원 차단 시점의 운전 상태로 운전하고자 하는 경우에 COM-96 PowerOn Resume 기능을 YES 합니다.

통신을 통해서 운전을 하고 있는 상태에서 정전 등으로 인한 입력 전원이 차단될 경우 전원이 차단된 시점의 통신에 의한 운전 지령, 주파수, 가/감속 시간에 따라서 자동으로 저장을 하게 됩니다. COM-96 PowerOn Resume 를 Yes 로 설정한 경우 정전 전 인버터가 운전 중이였다면 복전 후 통신 운전 지령이 없는 경우에도 자동으로 운전을 재개합니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
DRV 0	06	운전 지령 방법	Cred Course	3	Int 485	о г	
	06		Cmd Source	4	Field Bus	0~5	-
COM 96		통신 운전 자동	PowerOn Resume	0	No		
	96	시작		1	Yes	0~1	-

참고

 모터의 부하(팬 부하)가 프리 런(Free Run) 상태일 때 인버터를 운전하면 트립이 발생할 수 있으므로, CON 그룹(제어 기능 그룹)의 속도 써치 운전 선택 코드 CON-71에서 4번째 비트를 1로 설정하십시오. 이렇게 하면 인버터 기동 시 속도 써치 기능을 이용하여 운전을 시작합니다.

속도 써치를 선택하지 않는 경우 인버터는 속도 써치 없이 정상 V/F 패턴으로 모터를 가속합니다. 전원 투입 즉시 기동 기능을 설정하지 않았다면, 인버터 전원을 켠 후 단자대의 운전 지령은 오프(Off)상태에서 온(On)상태로 바뀌어야 운전을 합니다.

① 주의

전원 투입 즉시 기동 기능을 사용하면 전원 투입과 동시에 모터가 회전하므로 안전 사고에 주의하십시오.

4.9 트립 발생 후 초기화 시 재기동(Reset Restart)

트립 발생 후 인버터를 초기화했을 때 단자대 운전 지령이 온(On)되어 있으면 인버터가 재기동합니다. 트립이 발생하면 인버터가 출력을 차단하므로 모터는 프리 런(Free Run)합니다. 모터가 프리 런 상태일 때 운전하면 트립이 다시 발생할 수 있습니다. PRT-08 의 1 번 비트는 LV를 제외한 트립 발생시,2 번 비트는 LV Trip 발생시 동작을 설정합니다. 자동 재기동 지연시간은 PRT-10 에 설정하며 이는 Trip 발생 후 PRT-10 에 설정된 시간 이후에 리셋을 실시합니다. 자동 재기동 횟수는 트립 발생 후 리셋후 재기동하는 횟수이다(리셋후 재기동 중 다시 트립이 발생할 시 Retry Number 를 하나씩 차감하게 되며 설정된 횟수만큼 리셋 재기동을 실시함. 초기 트립 발생 후 리셋 후 재기동에 성공하게 되면 다음번 트립이 발생하기 전에는 재기동을 실행하지 않습니다. 자동 재기동 횟수는 트립 후 재기동에 의해 PRT-09 값이 줄어들더라도 Trip 상태가 아닌 경우 일정 시간 이후 PRT-09 카운터 값이 회복됩니다.)

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
DRV	06	운전 지령 방법	Cmd Source	1	Fx/Rx-1	0~5	-
PRT	08	트립 리셋 시 기동 선택	RST Restart	00		00~11	Bit
	09	자동 재기동 횟수	Retry Number	6		0~10	-
	10	자동 재기동 지연 시간	Retry Delay	5.0		0.1~600.0	sec

참고

Г

- 트립이 발생하여 모터가 프리런 상태로 돌고 있을시 Reset Restart 기능이 실행 될 경우 다시 트립이 발생하게 되는데 이를 방지하려면 CON 그룹(제어 기능 그룹)의 속도 써치 운전 선택 코드 CON-71 에서 비트 2 를 1 로 설정하십시오. 이렇게 하면 Low Voltage Trip 을 제외한 트립 해제 후 인버터 기동 시 속도 써치(Speed search)를 이용하여 운전을 시작합니다.
- 고장 초기화 시 재기동(Reset Restart) 기능을 설정하지 않았다면, 고장이 발생 후 고장을 해제하여 운전 가능한 상태에서 단자대의 운전 지령 상태가 오프(Off)상태에서 다시 온(On) 상태가 되어야만 운전이 시작됩니다.

① 주의

초기화 시 재기동 기능을 사용하면 트립 발생 후 단자대 또는 키패드에서 인버터 초기화 시 모터가 회전하므로 안전 사고에 주의하십시오.

4.10 가/감속 시간 설정

4.10.1 최대 주파수 기준으로 가/감속 시간 설정

운전 주파수와 관계 없이 최대 주파수를 기준으로 하여 동일한 기울기로 가/감속 시간을 설정합니다. 최대 주파수를 기준으로 가/감속 시간을 설정하려면 BAS 그룹(기본 기능 그룹)의 가속/감속 기준 주파수 코드 BAS-08 에서 0(Max Freq)을 선택하십시오.

DRV 그룹(드라이브 그룹)의 가속 시간 설정 코드 DRV-03 에서 설정한 가속 시간은 0Hz 에서 최대 주파수까지 도달하는 데 걸리는 시간이며, DRV-04 (감속 시간) 코드의 감속 시간은 최대 주파수에서 0Hz 까지 감속 정지하는 데 걸리는 시간입니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
				20.0	0.75~90KW		
	03	가속 시간	Acc Time	60.0	110~250KW	0.0~600.0	sec
				100.0	315~500KW		
	04	감속 시간	Dec Time	30.0	0.75~90KW		
DRV				90.0	110~250KW 0.0~600.		Sec
				150.0	315~500KW		
	20	최대 주파수	Max Freq	60.00		40.00~400 .00	Hz
BAS	08	가/감속 기준 주파수	Ramp T Mode	0	Max Freq	0~1	-
	09	시간 단위 설정	Time scale	1	0.1sec	0~2	-

최대 주파수 기준으로 가/감속 시간 설정 시 상세

코드 및 기능	설명		
	코드 값 [.] 시간을	을 0(Max Freq)으로 설정할 수 있습니다.	선택하면 최대 주파수를 기준으로 가/감속
BAS-08 Ramp T	설정		기능
NODE	0	Max Freq	최대 주파수를 기준으로 가/감속 시간 설정
	1	Delta Freq	운전 주파수를 기준으로 가/감속 시간

기본 기능

코드 및 기능	설명				
			설정		
	즉, 최대 주파수를 60.00Hz, 가/감속 시간을 5초, 운전 주파수를 30Hz로 설정했다면, 30Hz까지 도달하는 데 걸리는 시간은 2.5초입니다.				
	최대 주 <u>주파수</u> 운전 지	령 가속 시간	·····································		
	가/감속 따라 정 때 사용	시간과 관련된 기능 밀한 가/감속 시간이 합니다.	의 단위를 변경합니다. 부하의 특성에 필요하거나, 최대 설정 시간을 증가시킬		
BAS-09 Time	설정		기능		
Could	0 0.01sec		0.01초 단위까지 설정		
	1	0.1sec	0.1초 단위까지 설정		
	2	1sec	1초 단위로 설정		

①주의

Г

시간 단위를 변경하면 설정 가능한 최대 시간도 변경되므로 주의하십시오. 시간 단위를 1sec, 가속 시간을 6000sec 로 설정한 상태에서 시간 단위를 0.01sec 로 변경하면 가속 시간은 60.00sec 로 변경됩니다.

4.10.2 운전 주파수 기준으로 가/감속 시간 설정

현재 정속 운전 중인 주파수에서 다음 스텝의 목표 주파수까지 도달하는 데 걸리는 시간으로 가/감속 시간을 설정합니다. 운전 주파수를 기준으로 가/감속 시간을 설정하려면 BAS 그룹(기본 기능 그룹) 의 가/감속 기준 주파수 코드 BAS-08 에서 1(Delta Freq)을 선택하십시오.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
			Acc Time	20.0	0.75~90KW		
	03	가속 시간		60.0	110~250KW	0.0~600.0	sec
עמס				100.0	315~500KW		
DRV		감속 시간	Dec Time	30.0	0.75~90KW		
	04			90.0	110~250KW	0.0~600.0	sec
				150.0	315~500KW		
BAS	08	가/감속 기준 주파수	Ramp T Mode	1	Delta Freq	0~1	-

운전 주파수 기준으로 가/감속 시간 설정 상세

4.10.3 다기능 단자로 다단 가/감속 시간 설정

Г

DRV 그룹의 ACC(가속 시간) DRV-03, DEC(감속 시간) DRV-04 코드에서 다기능 단자를 이용하여 가/감속 시간을 설정할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위	
				20.0	0.75~90KW			
	03	가속 시간	Acc Time	60.0	110~250KW	0.0~600.0	sec	
עמס				100.0	315~500KW			_
DRV				30.0	0.75~90KW			
	04	감속 시간	Dec Time	90.0	110~250KW	0.0~600.0	sec	
				150.0	315~500KW			_
BAS	70.00	3 다단 가/감속 시간1~7	Acc Time 1~7	x.xx		0.0~600.0	sec	
	70~83		Dec Time 1~7	x.xx		0.0~600.0	sec	
			Du Define	11	XCEL-L			
	65~71	Px 단자 기능 설정		12	XCEL-M	0~55	-	
IN			(PX: P1~P7)	13	XCEL-H	1		
	89	다단 지령 지연 시간	In Check Time	1		1~5000	ms	

다기능 단자로 가/감속 설정 시 상세

코드 및 기능	설명	설명						
BAS-70~82 Acc Time 1~7	다단 가	다단 가속 시간1~7을 설정합니다.						
BAS-71~83 Dec Time 1~7	다단 감	속 시간1~7을 설정	합니다.					
	다단 가, 설정합니	/감속 시간 입력으로 니다.	르 사용할 단자를 선택하여 속도를					
	설정		기능					
	11	XCEL-L	가감속 지령-L					
IN-65~71	12	XCEL-M	가감속 지령-M					
Px Define (P1~P7)	13	XCEL-H	가감속 지령-H					
	지정 지정은 17 가감속 지정-H 가감속 지령은 2진수 명령어로 인식되어 BAS-70~82 코드와 BAS- 71~83 코드에서 설정한 가/감속 시간을 선택하여 운전합니다.							

코드 및 기능	설명		
	동작합니다.		
	가속 가속1 <u>구파수</u> 가속1 <u>가속0</u> <u>가속1</u> <u>가속1</u> <u>가속1</u> <u>우려</u> <u>우려</u> <u>우려</u>	가속3 감속0감속1 2 감속2 감속2	ŀ속3
	가/감속 시간	P7	P6
	0	-	-
	1	-	\checkmark
	2	✓	-
	3	✓	✓
	[다기능 단자 P6, P7 설? 	5]	
	인버터 내부에서 단자대	입력을 확인하는 시간을	설정합니다.
IN-89 In Check	IN-89 코드를 100ms로 [·]	설정한 후,P6 단자에 신호	Σ를 입력하면 100ms
Time	동안 다른 단자대 입력	여부를 확인합니다. 100ms	s가 지나면 P6
	단자에 해당하는 가/감속	· 시간으로 설정됩니다.	

٦

4.10.4 가/감속 시간 전환 주파수 설정

가/감속 시간 전환 주파수를 설정하면 다기능 단자 설정 없이도 가/감속 기울기를 바꿀 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
	03	가속 시간	Acc Time	20.0	0.75~90KW		
עמס				60.0	110~250KW	0.0~600.0	sec
DRV				100.0	315~500KW		
	04		Dec Time	30.0	0.75~90KW	0.0~600.0	sec

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
		가소 니가		90.0	110~250KW		
		감독 시간		150.0	315~500KW		
DAG	70	다단 가속 시간 1	Acc Time-1	20.0 20.0		0.0~600.0	sec
BAS	71	다단 감속 시간 1	Dec Time-1			0.0~600.0	sec
ADV	60	가/감속 시간 전환	Xcel	30.00		0~최대	Hz
		주파수	Change Fr			주파수	

가/감속 시간 전환 주파수 설정 상세

Γ

코드 및 기능	설명
코드 및 기능 ADV-60 Xcel Change Fr	설명 가/감속 전환 주파수를 설정하면 운전 주파수가 설정된 가/감속 전환 주파수 이하일 동안에는 BAS-70, 71 코드에서 설정한 기울기로 운전합니다. 운전 주파수가 설정된 가/감속 전환 주파수 이상 증가하면 DRV-03 의 Acc Time, DRV-04 Dec Time 코드에서 설정한 가/감속 기울기로 전환하여 운전합니다. P1~P7 다기능 입력 단자에 다단 가/감속(XCEL-L, XCEL-M, XCEL-H)을 설정하면 가/감속 전환 주파수와 관계 없이 다단 가/감속 입력에 따라 운전합니다. ※ Xcel Change Fr 파라미터는 ADV-24 Freq Limit Mode 가 no 로 설정 되어있을때만 적용됩니다. DRV-03 BAS-70 BAS-71 CTTC
	운전 지령

기본 기능

4.11 가/감속 패턴 설정

가/감속 기울기 패턴을 설정하면 보다 부드럽게 가/감속할 수 있습니다. 리니어(Linear) 패턴을 사용하면 출력 주파수가 일정한 크기를 가지고 선형적으로 증가하거나 감소합니다. 반면, S 커브(S-curve) 패턴은 승강 부하나 엘리베이터 도어 등, 부드러운 가/감속이 필요할 때 사용합니다. S 커브의 곡선 비율은 ADV 그룹(확장 기능 그룹) 03~06 코드에서 조정할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
BAS	08	가/감속 기준 주파수	Ramp T mode	0	Max Freq	0~1	-
	01	가속 패턴	Acc Pattern	0	Linear	0.1	-
	02	감속 패턴	Dec Pattern	1	S-curve	0~1	-
	03	S 자 가속 시점 기울기	Acc S Start	40		1~100	%
ADV	04	S 자 가속 종점 기울기	Acc S End	40		1~100	%
	05	S 자 감속 시점 기울기	Dec S Start	40		1~100	%
	06	S 자 감속 종점 기울기	Dec S End	40		1~100	%

가/감속 패턴 설정 시 상세

코드 및 기능	설명
ADV-03 Acc S Start	가/감속 패턴을 S 커브로 설정한 경우, 가속을 시작할 때의 곡선 비율(기울기)을 설정합니다. 곡선 비율은 목표 주파수의 1/2 주파수를 기준으로 1/2 주파수 이하 구간에서 골성 가속이 차지하는 비율입니다
	목표 주파수 60Hz, 최대 주파수 60Hz, ADV-03 코드를 50%로 설정한 경우, S 커브가 30Hz 까지 가속할 때 0~15Hz 구간은 곡선 가속하고, 15~30Hz 구간은 직선 가속합니다.
ADV-04 Acc S End	운전 주파수가 목표 주파수에 도달할 때의 곡선 비율을 설정합니다.

코드 및 기능	설명
	곡선 비율은 목표 주파수의 1/2 주파수를 기준으로 1/2 주파수 이상 그가에서 고서 가소이 차지하는 비용이니다.
	구선에지 특선 가족이 자지하는 미퓰합니다. ADV-03 Acc S Start 예와 동일하게 설정한 경우 30~45 Hz 구간은 직선 가속하고, 45~60Hz 구간은 곡선 가속 후 정속 운전합니다.
ADV-05 Dec S Start ~ ADV-06 Dec S End	감속 시의 곡선 감속 비율을 설정합니다. 설정 방법은 가속 시의 비율과 동일합니다.

가/감속 패턴 설정

Γ

기본 기능

S 커브 사용 시 실제 가/감속 시간 계산법

실제 가속 시간=설정 가속 시간+설정 가속 시간 x 시점 기울기/2+설정 가속 시간 x 종점 기울기/2

실제 감속 시간=설정 감속 시간+설정 감속 시간 x 시점 기울기/2+설정 감속 시간 x 종점 기울기/2

① 주의

가/감속 패턴을 S 커브로 선택하면 실제 가/감속 시간이 설정된 가/감속 시간보다 길어지므로 주의하십시오.

4.12 가/감속 중지 지령 설정

다기능 입력 단자를 이용해 가/감속을 중지하고 정속 운전을 수행할 수 있습니다.

그 룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
IN	65~71	Px 단자 기능 설정	Px Define(Px: P1~ P7)	14	XCEL Stop	0~55	-

4.13 V/F 제어

Г

출력 주파수에 따른 전압의 크기, 기울기, 출력 패턴 등을 설정할 수 있습니다. 또한, V/F 제어를 이용하면 저속에서의 토크 부스트 양을 조정할 수 있습니다.

4.13.1 리니어 V/F 패턴 운전

주파수의 증감에 따라 출력 전압이 전압/주파수(V/F) 비율에 의해 일정한 크기로 증감합니다. 주파수에 관계 없이 일정한 토크가 필요한 부하에 사용합니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위	
IN	09	제어 모드	Control Mode	0 V/F		0~1	-	
	18	기저 주파수	Base Freq	60.00		30.00~400.00	Hz	キ レ
	19	시작 주파수	Start Freq	0.50		0.01~10.00	Hz	olu
BAS	07	V/F 패턴	V/F Pattern	0	Linear	0~3	-	

리니어 V/F 패턴 운전 시 설정 상세

코드 및 기능	설명
	기저 주파수를 설정합니다. 기저 주파수는 인버터의 정격 전압이
DRV-18 Base Freq	출력되는 주파수입니다. 모터 명판에 있는 주파수를 확인하여
- 1	입력하십시오.
	시작 주파수를 설정합니다. 시작 주파수는 인버터에서 전압이 출력되기
	시작하는 주파수입니다.
DRV-19 Start Freq	목표 주파수가 시작 주파수 미만인 경우에는 인버터에서 전압이 출력되지 않습니다. 그러나 시작 주파수 이상으로 운전 중인 상태에서 감속 정지할 경우에는 아래 그림과 같이 정지합니다.

٦

4.13.2 2 승 저감 V/F 패턴 운전

기동 특성이 2 승 저감 형태인 부하(팬, 펌프 등)에 적합한 운전 패턴입니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
BAS 07	07	7 V/F 패턴		1	Square	0.0	
	07		V/F Pattern	3	Square2	0~3	-

2 승 저감 V/F 패턴 운전 시 설정 상세

코드 및 기능	설명				
	부하의 기동 특성에 따라 1(Square)이나 3(Square2) 중 하나를 선택하십시오.				
	설정		기능		
BAS-07 V/F Pattern	1 Square		주파수의 1.5 승(목표주파수 1.5 승)에 비례하여 전압이 출렵됩니다.		
	3	Square2	주파수의 2 승(목표 주파수 2 승)에 비례하여 전압이 출력됩니다. 팬이나 펌프 등의 가변 토크(Variable Torque) 부하에 사용합니다.		

4.13.3 사용자 V/F 패턴 운전

Γ

특수 모터의 V/F 패턴 및 부하 특성에 맞게 사용자가 임의로 설정할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	님 값	설정 범위	단위	
	07	V/F 패턴	V/F Pattern	2	User V/F	0~3	-	거도
BAS	41	사용자 주파수 1	User Freq 1	15.0	00	0~최대 주파수	Hz	기는
	42	사용자 전압 1	User Volt 1	25	25 0~100		%	
	43	사용자 주파수 2	User Freq 2	30.00		0~최대 주파수	Hz	
	44	사용자 전압 2	User Volt 2	50		0~100	%	
	45	사용자 주파수 3	User Freq 3	45.0	00	0~최대 주파수	Hz	
	46	사용자 전압 3	User Volt 3	75		0~100	%	
	47	사용자 주파수 4	User Freq 4	최다	주파수	0~최대 주파수	Hz	
	48	사용자 전압 4	User Volt 4	100		0~100%	%	

사용자 V/F 패턴 운전 시 설정 상세

코드 및 기능	설명
BAS-41 User	시작 주파수와 최대 주파수 사이에 있는 임의의 주파수를 선택하여
Freq 1 ~ BAS-48 User Volt	사용자 주파수(User Freq x)를 설정하고 각각의 주파수에 대응하는
4	전압을 사용자 전압(User Volt x)에서 설정합니다.

아래 그림에서 출력 전압 100%는 BAS-15 Rated Volt(모터 정격 전압) 코드의 설정 값 기준입니다. 단, BAS-15 Rated Volt 가 0 으로 설정되어 있을 때는 입력 전압을 기준으로 합니다.

① 주의

 일반 유도 모터를 사용할 때 리니어 V/F 패턴을 크게 벗어나도록 설정하면 토크가 부족하게 되거나 과여자되어 모터가 과열될 수 있으므로 주의하십시오.
 사용자 V/F 패턴 기능을 사용할 때에는 정방향 토크 부스트(DRV-16 Fwd Boost)와 역방향 토크 부스트(DRV-17 Rev Boost)는 동작하지 않습니다.

4.14 토크 부스트

4.14.1 수동 토크 부스트

저속 운전 중 또는 기동 시의 출력 전압을 조정합니다. 저속 영역에서의 출력 전압을 증가시켜서 기동 특성을 개선하거나 저속 토크를 증가시킬 수 있습니다. 수동 토크 부스트는 승강 부하 등 큰 기동 토크가 필요한 경우 사용합니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
DRV	15	토크 부스트 방법	Torque Boost	0	Manual	0~2	-
	16	정방향 토크 부스트	Fwd Boost	2.0	0.75~90kW	0.0~15.0	%
				1.0	110~500kW		
	17	역방향 토크 부스트	Rev Boost	2.0	0.75~90kW	0.0.45.0	0/
				1.0	110~500kW	0.0~15.0	70

수동 토크 부스트 설정 상세

Г

코드 및 기능	설명
DRV-16 Fwd Boost	정방향 회전 시 토크 부스트 양을 조정합니다.
DRV-17 Rev Boost	역방향 회전 시 토크 부스트 양을 조정합니다.

기본 기능

① 주의

토크 부스트 양을 너무 크게 설정할 경우 과여자되어 모터가 과열될 수 있으므로 주의하십시오.

4.14.2 자동 토크 부스트

자동 토크 부스트는 DRV-15 에서 Auto 1 또는 Auto 2 두 가지 방법 중에 하나를 선택하여 사용할 수 있습니다. 수동 토크 부스트는 부하의 특성에 상관 없이 유저가 설정한 토크 부스트량에 의한 인버터 전압이 출력되는 반면에 자동 토크 부스트의 경우는 인버터가 스스로 부하량에 맞춰 부스트량을 조절하여 인버터 전압을 출력하는 방법입니다.

자동 토크 부스트 1

모터 파라미터를 입력한 후 자동 토크 부스트를 사용하면 인버터가 자동으로 토크 부스트 양을 계산한 후 전압을 출력합니다. 자동 토크 부스트 기능이 동작하기 위해서는 모터의 고정자 저항, 인덕턴스 값, 무부하 전류 값 등이 필요하기 때문에 자동 튜닝(BAS-20)을 실행한 후에 사용해야 합니다[**205 페이지** 참조]. 큰 기동 토크가 필요하거나 자동 조정 기능이 필요할 때 사용합니다.

그룹	코드	명칭	LCD 표시	설정	! 값	설정 범위	단위
DR V	15	토크 부스트 방법	Torque Boost	1	Auto 1	0~2	-
BAS	20	자동 튜닝	Auto Tuning	3	Rs+Lsigma	0~3	-

자동 토크 부스트 2

전동기 파라미터 튜닝 없이 사용이 가능합니다. DRV-15 ATB Volt Gain 은 부하에 따른 보상 량을 조절하는 값으로 기동 시 토크가 부족하거나 또는 과도한 전류가 흐를 때 조정하여 사용할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	l 값	설정 범위	단위						
DRV	15	토크 부스트 방법	Torque Boost	2	Auto 2	0~2	-						
CON	21	오토 토크부스트 필터 게인	ATB Filt Gain	10		1~9999	mse c						
CON	22	오토 토크부스트 전압 게인	ATB Volt Gain	100.0		100.0		100.0		100.0		0~300.0	%

4.15 모터 출력 전압 조정

입력 전원과 모터 전압 규격이 다른 경우에 모터 전압을 설정하려면 모터 명판에 있는 전압을 입력하십시오. 설정된 전압 값은 기저 주파수에서의 출력 전압 값이 됩니다. 기저 주파수 이상에서는 입력 전압이 설정 전압보다 높은 경우 설정 값에 맞게 출력하지만 낮은 경우에는 입력 전압이 출력됩니다. BAS -15(모터 정격 전압) 코드를 0으로 설정하는 경우, 인버터가 정지한 상태에서의 입력 전압을 기준으로 출력 전압을 보정합니다. 기저 주파수 이상에서는 설정 값보다 입력 전압이 낮을 경우 입력 전압이 출력됩니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
BAS	15	모터 정격 전압	Rated Volt	0	170~480	V

4.16 기동 방법 설정

정지 상태에서 운전 지령이 입력되었을 때 인버터가 기동하는 방법을 선택합니다

4.16.1 가속 기동

Γ

일반적인 가속 방법으로, 별도의 기능 선택이 없는 경우 운전 지령이 입력되면 바로 목표 주파수까지 가속합니다.

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
ADV	07	기동 방법	Start mode	0	Acc	0~1	-

4.16.2 직류 제동 후 기동

직류 제동 후 기동 기능을 사용하면 설정된 시간 동안 직류 전압을 모터에 공급한 후에 모터를 가속합니다. 관성 부하로 인해 인버터에서 전압이 공급되기 전에 모터가 회전하고 있는 경우, 직류 제동으로 모터 회전을 멈춘 후 가속할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
ADV	07	기동 방법	Start Mode	1	DC- Start	0~1	-
	12	기동시 직류 제동 시간	DC-Start Time	0.00)	0.00~60.00	sec
	13	직류 인가량	DC Inj Level	50		0~200	%

① 주의

직류 제동량은 모터의 정격 전류 기준입니다. 단, 직류 제동량이 인버터 정격 전류 보다 큰 경우 인버터 정격 전류 값으로 제한됩니다. 직류 제동량이 너무 크거나 제동 시간이 긴 경우 모터가 과열되거나 파손될 수 있으며 인버터 IOLT 고장이 발생할 수 있습니다. 이 때 직류 제동량을 줄이거나 직류 제동 시간을 줄여 사용하여 주십시오

4.17 정지 방법 설정

운전 중 인버터에 정지 지령이 입력되었을 때 모터를 정지시키는 방법을 선택합니다.

4.17.1 감속 정지

일반적인 정지 방법으로, 별도의 기능 선택이 없는 경우 아래 그림에서와 같이 0Hz까지 감속 후 정지합니다.

그룹	코드	명칭	LCD 표시	설	정 값	설정 범위	단위
ADV	08	정지 방법	Stop Mode	0	Dec	0~4	-

기본 기능

4.17.2 직류 제동 후 정지

Г

모터를 감속하는 중, 설정한 값(직류 제동 주파수)으로 운전 주파수가 줄어 들었을 때, 직류 전원을 공급하여 모터를 정지합니다. 정지 지령 입력으로 감속을 시작한 후, 주파수가 직류 제동 주파수(ADV-17)에 도달하면 직류 전압을 모터에 공급하여 직류 제동으로 모터를 정지시킵니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
	08	정지 방법	Stop Mode	1	DC Brake	0~4	-
	4.4	제동 전 출력 차단 시간	Dc-Block	0.00 0.75~90kW 2.00 110~500kW		0.00~60.00	sec
	14		Time				
ADV	15	직류 제동 시간	Dc-Brake Time	1.00		0~60	sec
	16	직류 제동량	Dc-Brake Level	50		0~200	%
	17	직류 제동 주파수	Dc-Brake Freq	5.00		0.00~60.00	Hz

직류 제동 후 정지 시 설정 상세

코드 및 기능	설명
ADV-14 Dc- Block Time	직류 제동을 시작하기 전 인버터 출력을 차단할 시간을 설정합니다. 부하의 관성이 크거나 직류 제동 주파수(ADV-17)가 높을 경우, 직류 전압을 모터에 공급하면 과전류되어 트립이 발생할 수 있습니다. 따라서 제동 전에 출력 차단 시간을 조정하면 과전류 트립을 방지할 수 있습니다.
ADV-15 Dc- Brake Time	모터에 직류 전압을 공급할 시간을 설정합니다.

① 주의

직류 제동량은 모터의 정격 전류 기준입니다. 단, 직류 제동량이 인버터 정격 전류 보다 큰 경우 인버터 정격 전류 값으로 제한됩니다. 직류 제동량이 너무 크거나 제동 시간이 긴 경우 모터가 과열되거나 파손될 수 있으며 인버터 IOLT 고장이 발생할 수 있습니다. 이 때 직류 제동량을 줄이거나 직류 제동 시간을 줄여 사용하여 주십시오.

4.17.3 프리 런(Free Run) 정지

운전 지령이 오프(Off)되면 인버터는 출력을 차단하고, 부하는 관성 정지합니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
ADV	08	정지 방법	Stop mode	2	Free-Run	0~4	-

기본기능

①주의

Г

모터 부하 측 관성이 크고, 모터가 고속으로 운전 중일 때 인버터 출력이 차단되면 부하 관성에 의해 모터가 계속 회전할 수 있으므로 주의하십시오.

4.17.4 파워 제동(Power Braking)

모터 회생 에너지에 의해 인버터 직류 전압이 일정 수준 이상 상승하는 경우에는 회생 에너지를 감소시키기 위해 감속 기울기를 조정하거나 모터를 다시 가속시키는 제어가 이루어집니다. 파워 제동은 과전압 트립 없이 최적 감속하거나 제동 저항 없이 짧은 감속 시간이 필요한 경우에 사용합니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
ADV	08	정지 방법	Stop Mode	4	Power Braking	0~4	-

① 주의

- 빈번한 감속이 이루어지는 부하에서는 파워 제동 기능을 사용하지 마십시오. 모터가 과열되거나 손상될 수 있습니다.
- 감속 중 스톨 방지 및 파워 제동 기능은 감속 중에만 기능이 동작하며, 이 중 파워 제동이 우선적으로 동작합니다. 즉, PRT-50(스톨 방지 및 플럭스 브레이킹) 코드의 비트 3 과 ADV-08(정지 방법) 코드의 파워 제동이 모두 설정되어 있는 경우에는 파워 제동이 동작합니다.
- 감속 시간이 매우 짧거나, 부하의 관성이 큰 경우에는 과전압 트립이 발생할 수 있으므로 주의하십시오.
- 프리 런 정지 기능을 사용하면 설정된 감속 시간보다 실제 감속 시간이 길어질 수 있으니 주의하십시오.

4.18 주파수 제한

최대 주파수/시작 주파수, 주파수 상하한 값 등을 이용하여 운전 주파수의 설정을 제한할 수 있습니다.

4.18.1 최대 주파수와 시작 주파수를 이용하여 주파수 제한

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
DR	19	시작 주파수	Start Freq	0.50	0.01~10.00	Hz
V	20	최대 주파수	Max Freq	60.00	40.00~400.00	Hz

최대 주파수와 시작 주파수를 이용하여 주파수 제한 시 설정 상세

코드 및 기능	설명
DRV-19 Start Freq	속도와 관련된 단위(Hz, Rpm)를 갖는 파라미터에 하한 값을 설정합니다. 주파수를 시작 주파수 이하로 입력하면 설정 값은 0.00 이 됩니다.
DRV-20 Max Freq	상한 값과 하한 값을 각각 설정합니다. 상한 값의 설정 최소 값은 하한 값이며, 하한 값의 설정 최대 값은 상한 값으로 제한됩니다. 키패드로 주파수를 설정할 때에도 상한 값과 하한 값 내에서만 주파수 설정이 가능합니다.

4.18.2 주파수	상하한	값을	이용하여	주파수	제한
------------	-----	----	------	-----	----

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
ADV	24	주파수 제한	Freq Limit	0	No	0~1	-
	25	주파수 하한 값	Freq Limit Lo	0.50		0.0~상한 주파수	Hz
	26	주파수 상한 값	Freq Limit Hi	최대 주파수		하한~최대 주파수	Hz

주파수 상하한 값을 이용하여 주파수 제한 시 설정 상세

코드 및 기능	설명	
ADV-24 Freq Limit	초기 설정 값은 0(No)이며, 1(Yes)로 설정하면 하한 값(ADV-25)과 상한 값(ADV-26) 사이에서만 주파수를 설정할 수 있습니다.	<u> </u>
ADV-25 Freq Limit Lo ADV-26 Freq Limit Hi	기저 주파수(DRV-18)를 제외한 모든 속도 단위(Hz, Rpm) 파라미터에 상한 값을 설정합니다. 주파수는 최대 주파수 이상 설정할 수 없습니다.	

① 주의

Г

• 인버터 하한 주파수인 Low Freq 는 ADV-24 Freq Limt 가 Yes 인 경우에는 ADV-25 Freq Limit Lo 의 설정 주파수가 되고, ADV-24 Freq Limit 가 No 인 경우에는 DRV-19 Start Freq 가 됩니다. 인버터 상한 주파수 High Freq 는 ADV-24 Freq Limt 가 Yes 인 경우에는 ADV-26 Freq Limit Hi 의 설정 주파수가 되고, ADV-24 가 No 인 경우에는 DRV-20 MaxFreq 가 됩니다.

4.18.3 주파수 점프

기계적 공진 주파수를 피하고 싶을 때 주파수 점프 기능을 사용합니다. 모터가 가/감속할 때에는 주파수 점프 대역을 통과하며, 설정된 주파수 점프 대역에서는 운전 주파수를 설정할 수 없습니다.

주파수 설정을 증가시키는 경우에는 주파수 설정 값(전압, 전류, RS-485 통신, 키패드 설정 등)이 점프 주파수 대역에 있는 동안 주파수 점프 하한 값을 유지하다가 주파수 설정 값이 주파수 점프 대역을 벗어나면 주파수를 증가시킵니다.

그룹	디	명칭	LCD 표시	설정 집	값	설정 범위	단위
	27	주파수 점프	Jump Freq	0	No	0~1	-
ADV	28	점프 주파수 하한 1	Jump Lo 1	10.00		0.00~점프 주파수 상한 1	Hz
	29	점프 주파수 상한 1	Jump Hi 1	15.00		점프 주파수 하한 1~최대 주파수	Hz
	30	점프 주파수 하한 2	Jump Lo 2	20.00		0.00~점프 주파수 상한 2	Hz
	31	점프 주파수 상한 2	Jump Hi 2	25.00		점프 주파수 하한 2~최대 주파수	Hz
	32	점프 주파수 하한 3	Jump Lo 3	30.00		0.00~점프 주파수 상한3	Hz
	33	점프 주파수 상한 3	Jump Hi 3	35.00		점프 주파수 하한 3~최대 주파수	Hz

Γ

4.19 제 2 운전 방법 설정

2 가지 운전 방법을 설정하여 필요에 따라 전환하고자 할 때 사용합니다. 주 지령 방법 외에 제 2 지령 방법을 설정하여, 다기능 입력 단자로 운전 지령을 내리고 주파수를 설정할 수 있습니다. 통신 옵션 등을 이용하여 원거리 운전을 하고 있을 때, 이런 방법으로 원거리 제어를 중지하고 운전 방법을 전환하여 로컬 패널이나 또다른 원거리 제어실에서 인버터를 운전할 수 있습니다. IN 그룹(입력 단자대 기능 그룹) 65~71 코드 사이의 다기능 단자 중 하나를 선택하여 15(2nd Source)로 선택합니다.

그룹	코드	명칭 LCD 표시		설정 값		설정 범위	단위
DRV	06	운전 지령 방법	Cmd Source	1	Fx/Rx-1	0~5	-
	07	주파수 설정 방법	Freq Ref Src	2	V1	0~11	-
BAS	04	제 2 운전 지령 방법	Cmd 2nd Src	0	Keypad	0~5	-
	05	제 2 주파수 설정 방법	Freq 2nd Src	0	KeyPad-1	0~11	-
IN	65~71	Px 단자 기능 설정	Px Define (Px: P1~P7)	17	2nd Source	0~55	-

제 2 운전 방법 설정 시 상세

코드 및 기능	설명
	제 2 지령(2nd Source)으로 설정된 다기능 단자에 신호가
BAS-04 Cmd 2nd	입력(On)되면 운전 그룹의 DRV-06 코드와 DRV-07 코드에서 설정한
Src BAS-05 Frea 2nd	값 대신에 BAS-04~05에서 설정한 값으로 운전할 수 있습니다.
Src	주 지령(Main Source)으로 운전 중에는 제 2 지령을 변경할 수
	없습니다.

① 주의

 다기능 단자를 제 2 지령(2nd Source)으로 설정하고 신호를 입력(On)하면 주파수 설정과 운전 지령 등이 모두 제 2 지령으로 모두 바뀌게 되어 운전 상태가 변하게 됩니다. 따라서 다기능 단자를 입력하기 전에 제 2 지령이 올바르게 설정되어 있는지 확인해야 합니다. 감속 시간이 매우 짧거나, 관성이 큰 경우에는 과전압 트립이 발생할 수 있으므로 주의하십시오.

기본 기능

 운전 지령의 설정 값에 따라서는 인버터 운전 중에 지령 방법을 전환하는 경우, 인버터가 정지할 수 있습니다. AUTO mode 에서 제 2 지령에 의해서 Cmd Source 가 변하더라도 변경될 Cmd Source 상태에 따라서 인버터가 정지할 수도 있습니다. DRV-06 이 KeyPad 였고 BAS-04 가 Cmd Source 가 int. 485 일 경우에 키패드로 운전하고 있는 도중 제 2 지령 신호가 들어온 경우 Int. 485 에서 운전 지령 신호가 들어와 있는 경우는 연속 운전될 것이고 그렇지 않은 경우는 인버터는 정지하게 됩니다.

4.20 다기능 입력 단자 제어

Г

다기능 입력 단자에 대한 필터 시정 수와 접점 종류 등을 설정할 수 있습니다. 입력 단자의 응답성을 개선하고 싶은 경우 사용합니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
IN	85	다기능 입력 단자 온 필터	DI On Delay	10	0~10000	msec
	86	다기능 입력 단자 오프 필터	DI Off Delay	3	0~10000	msec
	87	다기능 입력 접점 선택	DI NC/NO Sel	000 0000*	-	-
	90	다기능 입력 단자 상태	DI Status	000 0000*	-	-

*오른쪽부터 다기능 입력 단자 1 번에 해당하며 왼쪽 방향으로 순차적으로 표시됩니다.

다기능 입력 단자 제어 시 설정 상세

코드 및 기능	설명					
IN-85 DI On	단자가 입력된	단자가 입력된 후 입력 단자의 상태가 설정된 시간 동안 변동이 없으면				
Off Delay	온(On) 또는 오프(Off)로 인식합니다.					
	입력 단자의 접점 종류를 선택할 수 있습니다. 각 비트에 해당하는					
	스위치의 점(I	스위치의 점(Dot) 위치를 아래로 설정하면 A 접점(Normal Open)으로				
IN-87 DI NC/NO	사용하고, 위로 설정하면 B 접점(Normal Close)으로 사용할 수 있습니					
	오른쪽부터 순	는서대로 P1~P7 단자입니다.				
	항목	B 접점 상태	A 접점 상태			

코드 및 기능	설명		
	LCD 로더 표시		
IN-90 DI Status	입력 단자대 A 접점으로 실 상태를 표시 B 접점으로 실 P1~P7 단자	의 상태를 표시합니다.DR 철정한 경우, 스위치의 점(하고 아래에 있으면 오프(철정된 경우에는 반대로 등 입니다.	℃-87 코드에서 해당 비트를 (Dot) 표시가 위에 있으면 온(On) Off) 상태를 표시합니다. 동작합니다. 오른쪽부터 순서대로
	항목 A 접 LCD □ 로더 ■	점 설정 시 비트 온(On)	A 접점 설정 시 비트 오프(Off)

4.21 다기능 입력 단자 On/Off Delay 제어

다기능 입력 단자에 대한 On/Off Delay 의 사용 여부를 설정 할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
IN	83	DI On Delay 적용 여부	DI On DelayEn	111 1111	000 0000 ~ 111 1111	-
	84	DI Off Delay 적용 여부	DI Off DealyEn	111 1111	000 0000 ~ 111 1111	-

다기능 입력 단자 On/Off Delay 제어 시 설정 상세

코드 및 기능	설명
	입력 단자의 온(On)/오프(Off) Delay 를 사용 할지 여부를 각 입력
IN-83 DI On	단자마다 설정 할 수 있습니다. 오른쪽부터 순서대로 P1~P7 단자의 DI
Delay En	온(On)/오프(Off) Delay 사용 여부를 설정 할 수 있습니다.
Delay En	1: DI 온(On)/오프(Off) Delay 활성화
	0: DI 온(On)/오프(Off) Delay 비활성화

기본 기능

4.22 출력 전압 Drop 개선 기능

낮은 입력 전원과 과부하 조건에서 출력전압 지령 영역을 충분히 이용함으로써 보다 많은 출력 전압을 얻을 수 있도록 하여 출력 전압 Drop을 개선하여 출력 전류를 감소하도록 하는 기능 입니다.

출력 전압 Drop 개선 파라미터 설정

그룹	코드	명칭	LCD 표시	설정	니 값	설정 범위	단위
ADV	87	과변조 모드 설정	OVM Mode Sel	1	Yes	0~1	-

코드	설명	세부사항
ADV-87 OVM Mode Sel	과변조 모드 설정	ADV-87 OVM Mode Sel을 No로 설정하게 되면 지령 전압이 인버터가 선형적으로 출력 할 수 있는 범위까지 제한을 걸게 됩니다. OVM Mode Sel를 Yes로 설정하면 과변조 영역도 출력할 수 있도록 하여 지령 전압 범위를 확대하여 출력전압 지령 영역을 충분히 이용함으로써 보다 많은 출력전압을 얻게 됩니다.

① 주의

Г

- 선형범위를 벗어나 전류 파형에 왜곡이 발생할 수 있습니다.
- 입력 전압이 모터 정격 전압보다 큰 조건에서 모터 출력 전압이 더 높게 나갈 수 있습니다.
- 고속 운전 시 전류 표시값이 더 빠르게 흔들려 보일 수 있으나 전류 변화량은 크게 증가하지 않습니다.
- 출력전압 보상값은 파라미터 설정된 전동기 정격전압 이하로 보상됩니다.
- 입력전압이 출력전압보다 높을 경우 OVM Mode는 동작되지 않습니다.

5 응용 기능 사용하기

이 장에서는 H100 인버터의 고급 응용 기능을 소개합니다. 각 응용 기능에 대한 자세한 설명을 보려면 표 오른쪽의 참조 페이지를 확인하십시오. ٦

응용 기능	사용 예		
보조 주파수 운전	 주속/보조속 주파수를 사용하여 다양한 연산 조건을 적용할 수 있습니다. 운전 상태에서의 미세 속도 조정이 필요한 운전에 적합합니다. 		
조그 운전	수동 운전의 일종으로, 버튼을 누르고 있는 동안에만 미리 지정한 파라미터 설정 값에 의해 동작합니다.		
업_다운 운전	유량계 등의 상하한 값 스위치 출력 신호를 모터의 가/감속 지령으로 사용합니다.	<u>p.144</u>	
3-와이어 운전	입력된 신호를 기억(Latch)해서 운전하는 기능입니다. 푸시 버튼(Push Button) 등을 이용하여 인버터를 운전하려 할 때 사용합니다.	<u>p.146</u>	
안전 운전 모드	운전 지령을 내릴 때 안전 운전 모드로 설정한 다기능 단자에 신호가 온(On)되어야 운전 지령이 실행됩니다. 다기능 단자로 신중하게 인버터 운전을 제어할 때 사용합니다.	<u>p.147</u>	
드웰 운전	전동기 축에 기계적 브레이크가 장착되어 있어 브레이크 개방 및 동작 시 토크 확보가 필요할 때 사용합니다.	<u>p.149</u>	
슬립 보상 운전 부하 증가에 따라 증가하는 모터의 슬립을 보상하 일정 속도로 회전하도록 할 때 사용합니다.		<u>p.150</u>	
PID 제어	유량이나 압력, 온도 등을 일정하게 제어할 목적으로 인버터의 출력 주파수를 자동 제어할 때 사용합니다.	<u>p.152</u>	
Sleep Wake Up 운전	일정 시간 동안 PID 운전 조건 이하의 주파수로 운전이 지속 되는 경우, PID Reference 를 올려 운전 대기 모드를 오래 유지 하게 하여, 수량이 적은 시간대에 인버터를 대기모드로 할 때 사용합니다.	<u>p.169</u>	

응용 기능	사용 예	참조
자동 튜닝	선택된 제어 방식이 충분한 성능을 발휘할 수 있도록 제어에 필요한 모터 파라미터를 자동으로 측정할 때 사용합니다.	
에너지 버퍼링 운전	에너지 버퍼링 운전 시간 동안 인버터 출력 주파수를 제어하여 DC 링크의 전압을 가능한 한 오래 유지시키려 할 때 사용합니다. 따라서 순시 정전 후 저전압 트립까지의 시간을 연장할 수 있습니다.	
에너지 절약 운전	경부하나 무부하 시 모터에 공급되는 전압을 감소시켜 사용 에너지를 줄이려 할 때 사용합니다.	<u>p.223</u>
속도 써치 운전	모터가 공회전하고 있는 상태에서 인버터 전압을 출력하는 경우에 발생할 수 있는 트립을 방지하기 위해서 사용합니다.	<u>p.227</u>
자동 재기동 운전	인버터의 보호 기능이 동작하여 운전이 정지하는 경우, 트립이 해제되면 설정 값에 따라 자동으로 인버터를 재기동하도록 할 때 사용합니다.	<u>p.232</u>
제 2 모터 운전	한 대의 인버터에 서로 다른 2대의 모터를 연결하여 전환 운전할 경우에 사용합니다. 두 번째 모터를 위한 파라미터를 설정한 다음, 제 2 기능으로 정의된 단자의 입력을 통해 두 번째 모터를 운전하도록 전환합니다.	<u>p.237</u>
상용 전원 전환 운전	인버터로 운전되는 부하의 전원을 상용 전원으로 전환하거나 그 반대의 시퀀스를 동작할 때 사용합니다.	<u>p.239</u>
냉각 팬 제어	인버터 냉각 팬을 제어할 때 사용합니다.	<u>p.240</u>
다기능 출력 온/오프 제어	기준 값을 설정한 후, 아날로그 입력 값에 따라 출력 릴레이 또는 다기능 출력 단자를 온(On)/오프(Off)할 때 사용합니다.	<u>p.291</u>
회생 회피 운전	모터 정속 운전 중 일시적으로 회생 발생시 자동으로 모터 운전 속도를 올려 회생 영역을 방지할 때 사용합니다.	<u>p.292</u>
Damper 운전	Fan 에서 통풍구의 바람 조정 창치인 Damper 가 있을 경우 사용합니다.	<u>p.181</u>
Lubrication 운전	인버터 운전에 의해 기계 시스템을 구동하기 전에 윤활유 공급을 위해 사용합니다.	<u>p.182</u>

Γ

응용 기능

응용 기능	사용 예	참조
유량 보상	파이프 길이가 긴 경우 파이프 내의 압력 손실을 보상할 때 사용합니다.	
에너지 절감량 표시	절감량 표시 했는지 표시 할 때 사용합니다.	
펌프 클린 기능	펌프 사용시 임펠러 등에 찌꺼기가 끼는 등의 상황이 있을 때 사용합니다.	<u>p.187</u>
기동 및 정지 기울기 설정	펌프 기동 초기 운전시 펌프가 정상 운전 가능한 영역까지의 가속 시간을 설정하거나, 정지시 감속 시간을 설정할 때 사용합니다.	<u>p.192</u>
밸브 감속 시간 설정	감작스런 감속으로 인한 펌프의 손상을 방지하기 위해 사용합니다.	<u>p.193</u>
부하 튜닝 기능	경부하, 펌프 클린 기능에 필요한 부하특성 곡선을 만들기 위해 사용합니다.	<u>p.195</u>
레벨 검출 기능	사용자가 설정한 레벨을 검출하고자 할 때 사용합니다.	<u>p.197</u>
파이프 파손 검출 기능	PID 운전 중 배관이 터졌을 때를 검출하기 위해 사용합니다.	<u>p.201</u>
전동기 예열 기능	모터 혹은 펌프가 정지 상태에 있을 때 동결을 방지하기 할 때 사용합니다.	<u>p.202</u>
스케쥴링 운전	RTC 기능을 이용하여 사용자가 하고자 하는 기능을 원하는 시간에 동작하도록 할 때 사용합니다.	<u>p.213</u>
Fire Mode 운전	흡기팬, 배기팬 등에서 화재와 같은 위급한 상황 시 사용합니다.	<u>p.224</u>

٦

5.1 보조 주파수 운전

주속 주파수와 보조속 주파수를 동시에 사용하여 다양한 연산 조건을 가지는 운전 주파수를 사용할 수 있습니다. 이 때, 주속은 주 운전 주파수 설정에 이용하고 보조속은 주속 운전 상태에서의 미세 속도 조정 등에 이용합니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
DRV	06	주파수 설정 방법	Freq Ref Src	0	Keypad-1	0~11	-
BAS C	01	보조속 지령 설정 방법	Aux Ref Src	1	V1	0~13	-
	02	보조속 지령 동작 선택	Aux Calc Type	0	M+(G*A)	0~7	-
	03	보조속 지령 게인	Aux Ref Gain	100.0	100.0	-200.0~200.0	%
IN	65~ 71	Px 단자 기능 설정	Px Define	36	dis Aux Ref	0~55	-

예를 들어, 위의 표와 같이 주속과 보조속을 설정한 경우, DRV-06 Freq Ref Src 코드를 0(Keypad-1)으로 설정하여 주속 30.00Hz 로 운전 중, V1 단자에 -10~+10V 전압을 공급하고 이에 대한 게인을 5%로 설정하면 27.00~33.00Hz 까지 미세 조정이 가능합니다(IN-01~16 까지의 변수가 초기 값이고, IN-06 V1 Polarity 를 1(Bipolar)로 설정).

보조 주파수 운전 설정 상세

Г

코드 및 기능	설명	설명				
	보조	보조속 지령으로 사용할 입력 종류를 선택합니다.				
	설정	3	기능			
	0	None	보조속 동작을 하지 않습니다.			
	1	V1	제어 단자대의 전압 입력 단자를 보조속 지령으로 선택합니다.			
BAS-01 Aux Ref Src	3	V2	l2 단자의 전압 입력[아날로그 전압/전류 입력 단자 설정 스위치(SW4)를 V2로 설정]을 보조속 지령으로 선택합니다.			
	4	12	I2 단자의 전류 입력[아날로그 전압/전류 입력 단자 설정 스위치(SW4)를 I2 로 설정]을 보조속 지령으로 선택합니다.			
	5	Pulse	TI 단자의 Pulse 입력을 보조속 지령으로 선택합니다.			

코드 및 기능	설명				
	보조속의 크기를 게인(BAS-03 Aux Ref Gain)으로 결정한 후 주속에 대한 반영 비율을 설정할 수 있습니다. 설정 항목 4~7은 단방향 아날로그 입력만으로 + 또는 – 값이 적용될 수 있습니다.				
	설경	3	최종 지령 주파수 계산 방법		
	0	M+(G*A)	주속 지령 값+(BAS-03x BAS-01xIN-01)		
	1	M*(G*A)	주속 지령 값 x(BAS-03x BAS-01)		
	2	M/(G*A)	주속 지령 값/(BAS-03xBAS-01)		
BAS-02	3 M+{M*(G*A)}		주속 지령 값+{주속 지령 값 x(BAS-03x BAS- 01)}		
Aux Calc Type	4	M+G*2*(A-50)	주속 지령 값+ BAS-03x2x(BAS-01–50)xIN-01		
	5	M*{G*2*(A-50)}	주속 지령 값 x{ BAS-03x2x(BAS-01–50)}		
	6	M/{G*2*(A-50)}	주속 지령 값/{ BAS-03x2x(BAS-01-50)}		
	7	M+M*G*2*(A-	주속 지령 값+주속 지령 값 x BAS-		
		50)	03x2x(BAS-01-50)		
	M: ² G: 5	주속 주파수 지령(현조속 게인(%)	Hz 또는 Rpm)		
	A: 보소속 수파수 시령(Hz 또는 Rpm) 또는 게인(%)				
Gain	보조	속으로 설정된 입	력(BAS-01 Aux Ref Src)의 크기를 조절합니다.		
IN-65~71 Px 다기능 입력 단자 중 36(dis Aux Ref)으로 설정된 단자가 입 보조속 지령은 동작하지 않고 주속 지령으로만 동작합니다			36(dis Aux Ref)으로 설정된 단자가 입력되면 지 않고 주속 지령으로만 동작합니다.		

٦

보조 주파수 운전 사용 예 #1

Г

주파수 키패드 설정이 주속, V1 아날로그 전압이 보조속인 경우

- 주속 설정: Keypad(운전 주파수 30Hz)
- 최대 주파수 설정(DRV-20): 400Hz
- 보조속 설정(BAS-01): V1[연산 설정 조건에 따라 보조속(Hz) 또는 백분율(%)로 표시]
- 보조속 게인 설정(BAS-03): 50%
- IN-01~32: 공장 출하 값

예를 들어, V1 에 6V 가 입력되고 있다면 10V 에 대응하는 주파수는 60Hz 입니다. 따라서, 아래 표의 보조속 A 는 36Hz[=60Hz x (6V/10V)] 또는 60%[= 100% x (6V/10V)]입니다.

설정*		최종 지령 주파수** 계산 방법	
0	M[Hz]+(G[%]*A[Hz])	30Hz(M)+(50%(G)x36Hz(A))=48Hz	
1	M[Hz]*(G[%]*A[%])	30Hz(M)x(50%(G)x60%(A))=9Hz	
2	M[Hz]/(G[%]*A[%])	30Hz(M)/(50%(G)x60%(A))=100Hz	
3	M[Hz]+{M[Hz]*(G[%]*A[%])}	30Hz(M)+{30[Hz]x(50%(G)x60%(A))}=39Hz	
4	M[Hz]+G[%]*2*(A[%]-50[%])[Hz]	30Hz(M)+50%(G)x2x(60%(A)– 50%)x60Hz=36Hz	
5	M[HZ]*{G[%]*2*(A[%]-50[%])}	30Hz(M)x{50%(G)x2x(60%(A)–50%)}=3Hz	
6	M[HZ]/{G[%]*2*(A[%]-50[%])}	30Hz(M)/{50%(G)x2x(60%–50%)}=300Hz	
7	M[HZ]+M[HZ]*G[%]*2*(A[%]- 50[%])	30Hz(M)+30Hz(M)x50%(G)x2x(60%(A)– 50%)=33Hz	

*M: 주속 주파수 지령(Hz 또는 Rpm)/G: 보조속 게인(%)/A: 보조속 주파수 지령(Hz

또는 Rpm) 또는 게인(%)

**설정 주파수를 Rpm 으로 변경하면 Hz 대신 Rpm 으로 환산됩니다.

보조 주파수 운전 사용 예 #2

주파수 키패드 설정이 주속, I2 아날로그 전류가 보조속인 경우

- 주속 설정: Keypad(운전 주파수 30Hz)
- 최대 주파수 설정(BAS-20): 400Hz
- 보조속 설정(BAS-01): I2[연산 설정 조건에 따라 보조속(Hz) 또는 백분율(%)로 표시]
- 보조속 게인 설정(BAS-03): 50%
- IN-01~32: 공장 출하 값

예를 들어, I2 에 10.4mA 의 전류가 입력되고 있다면, 20mA 에 대응하는 주파수는 60Hz 입니다. 따라서 아래 표의 보조속 A 는 24Hz(=60Hz x{(10.4mA-4mA)/(20mA -4mA)} 또는 40%(=100% x{(10.4mA-4mA)/(20mA - 4mA)}입니다.

설정*		최종 지령 주파수** 계산 방법
0	M[Hz]+(G[%]*A[Hz])	30Hz(M)+(50%(G)x24Hz(A))=42Hz
1	M[Hz]*(G[%]*A[%])	30Hz(M)x(50%(G)x40%(A))=6Hz
2	M[Hz]/(G[%]*A[%])	30Hz(M)/(50%(G)x40%(A))=150Hz
3	M[Hz]+{M[Hz]*(G[%]*A[%])}	30Hz(M)+{30[Hz]x(50%(G)x40%(A))}=36Hz
4	M[Hz]+G[%]*2*(A[%]-50[%])[Hz]	30Hz(M)+50%(G)x2x(40%(A)– 50%)x60Hz=24Hz
5	M[HZ]*{G[%]*2*(A[%]-50[%])	30Hz(M)x{50%(G)x2x(40%(A)–50%)} = - 3Hz(역방향)
6	M[HZ]/{G[%]*2*(A[%]-50[%])}	30Hz(M)/{50%(G)x2x(60%-40%)} = - 300Hz(역방향)
7	M[HZ]+M[HZ]*G[%]*2*(A[%]- 50[%])	30Hz(M)+30Hz(M)x50%(G)x2x (40%(A)– 50%)=27Hz

* M: 주속 주파수 지령(Hz 또는 Rpm)/G: 보조속 게인(%)/A: 보조속 주파수 지령(Hz 또는 Rpm) 또는 게인(%)

**설정 주파수를 Rpm 으로 변경하면 Hz 대신 Rpm 으로 환산됩니다.

보조 주파수 운전 사용 예 #3

V1 이 주속, I2 가 보조속인 경우

Г

- 주속 설정: V1(주파수 지령 설정을 5V 로 하여 30Hz 로 설정한 경우)
- 최대 주파수 설정(DRV-20): 400Hz
- 보조속(BAS-01): I2[연산 설정 조건에 따라 보조속(Hz) 또는 백분율(%)로 표시]
- 보조속 게인(BAS-03): 50%
- IN-01~32: 공장 출하 값

예를 들어, I2 에 10.4mA 의 전류가 입력되고 있다면, 20mA 에 대응하는 주파수는 60Hz 입니다. 따라서 아래 표의 보조속 A 는 24Hz(=60Hz x {(10.4mA-4mA)/(20mA -4mA)} 또는 40%(=100% x {(10.4mA - 4mA) /(20mA - 4mA)}입니다.

설정*		최종 지령 주파수** 계산 방법
0	M[Hz]+(G[%]*A[Hz])	30Hz(M)+(50%(G)x24Hz(A))=42Hz
1	M[Hz]*(G[%]*A[%])	30Hz(M)x(50%(G)x40%(A))=6Hz
2	M[Hz]/(G[%]*A[%])	30Hz(M)/(50%(G)x40%(A))=150Hz
3	M[Hz]+{M[Hz]*(G[%]*A[%])}	30Hz(M)+{30[Hz]x(50%(G)x40%(A))}=36Hz
4	M[Hz]+G[%]*2*(A[%]-50[%])[Hz]	30Hz(M)+50%(G)x2x(40%(A)– 50%)x60Hz=24Hz
5	M[HZ]*{G[%]*2*(A[%]-50[%])}	30Hz(M)x{50%(G)x2x(40%(A)-50%)}=- 3Hz(역방향)
6	M[HZ]/{G[%]*2*(A[%]-50[%])}	30Hz(M)/{50%(G)x2x(60%-40%)}=- 300Hz(역방향)
7	M[HZ]+M[HZ]*G[%]*2*(A[%]- 50[%])	30Hz(M)+30Hz(M)x50%(G)x2x(40%(A)– 50%)=27Hz

* M: 주속 주파수 지령(Hz 또는 Rpm)/G: 보조속 게인(%)/A: 보조속 주파수 지령(Hz 또는 Rpm) 또는 게인(%)

**설정 주파수를 Rpm으로 변경하면 Hz 대신 Rpm으로 환산됩니다.

참고

최대 주파수가 큰 경우 아날로그 입력 오차 및 연산 오차에 의해 출력 주파수 오차가 발생할 수 있습니다.

5.2 조그(Jog) 운전

조그 운전에서 설정한 운전 방식에 따라 임시로 인버터를 제어할 수 있습니다. 조그 운전 지령은 단자대로 입력할 수 있습니다.

조그 운전은 드웰(Dwell) 운전을 제외하고는 우선 순위가 가장 높습니다. 따라서 다단속 운전이나 업-다운 운전, 3-와이어 운전 방식으로 운전 중일 때 조그 단자가 입력되면 조그 주파수로 운전합니다.

5.2.1 단자대 조그 운전 1-정방향 조그

다기능 단자대 입력으로 조그 운전을 설정합니다. 정방향 조그 운전을 하려면 아래 파라미터를 참조하십시오.

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
DRV	11	조그 주파수	JOG Frequency	10.00		0.00, Low Freq~ High Freq	Hz
	12	조그 운전 가속 시간	JOG Acc Time	20.00		0.00~600.00	sec
	13	조그 운전 감속 시간	JOG Dec Time	30.00		0.00~600.00	sec
IN	65~71	Px 단자 기능 설정	Px Define(Px: P1~P7)	6	JOG	0~55	-

정방향 조그 설정 상세

코드 및 기능	설명
	다기능 단자대 P1~P7 중 조그 주파수 설정 단자를 선택한 후 IN-
IN-65~71 Px Define	65~71 코드 중에서 해당하는 단자대의 기능을 6(JOG)으로
	선택합니다.

코드 및 기능	설명
	O P1 1(FX) O P5 6(JOG) CM [조그 운전 시 단자 설정]
DRV-11 JOG Frequency	조그 운전 시의 운전 주파수를 설정합니다.
DRV-12 JOG Acc Time	조그 운전 시의 가속 속도를 설정합니다.
DRV-13 JOG Dec Time	조그 운전 시의 감속 속도를 설정합니다.

운전 지령(Fx)이 입력된 상태에서 설정된 조그 단자에 신호가 입력되면 운전 주파수가 조그 주파수로 변경되며 조그 운전이 진행됩니다.

5.2.2 단자대 조그 운전 2-정/역방향 조그

Г

조그 운전 1 에서는 운전 지령이 입력되어야 운전이 가능하지만 조그 운전 2 에서는 정방향 조그(FWD JOG) 또는 역방향 조그(REV JOG)로 설정된 단자만으로도 조그 운전이 가능합니다. 조그 운전 시 주파수, 가/감속 시간 및 단자대 입력(드웰, 3-와이어, 업/다운 등)에 대한 우선 순위는 조그 운전 1 과 동일하며, 조그 운전 중 다른 운전 지령이 입력되어도 무시하고 조그 주파수로 운전합니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
DRV	11	조그 주파수	JOG Frequency	10.00		0.00, Low Freq~ High Freq	Hz
	12	조그 운전 가속 시간	JOG Acc Time	ne 20.00		0.00~600.00	sec
	13	조그 운전 감속 시간	JOG Dec Time	30.0	00	0.00~600.00	sec
IN	65~ 71	Px 단자 기능 설정	Px Define (Px: P1~P7)	38	FWD JOG	0.55	
				39	REV JOG	0~00	-

5.3 업- 다운(Up-Down) 운전

다기능 단자대 입력으로 가/감속을 제어할 수 있습니다. 업-다운 운전은 유량계와 같이 상하한 값 스위치 출력 신호를 모터의 가/감속 지령으로 사용하는 시스템에 간편하게 응용하여 사용할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
ADV	65	업-다운 운전 주파수 저장	U/D Save Mode	1	Yes	0~1	-
IN	<u>-</u>	Dv 다자 기느		19	Up	0~55	
	65~ 71	다 근지 기이	PX Define(PX:	20	Down		-
	/ 1	20 20	F ~ F /)	22	U/D Clear		

업-다운 운전 설정 상세

Г

코드 및 기능	설명
	업-다운 운전에 사용할 단자를 두 개 선택한 다음, 해당 코드를 19(Up)과 20(Down)로 각각 설정합니다. 운전 지령이 입력된 상태에서 업(Up) 단자 신호가 온(Op)되면 가속하고 신호가 오프(Off)되면 가속을
	멈추고 정속 운전합니다.
	운전 중에 다운(Down) 신호가 온(On)되면 감속을 시작하고,
	오프(Off)되면 감속을 정지하고 정속 운전합니다. 업 신호와 다운 신호가
IN-65~71 Px Define	동시에 입력되면 가/감속을 멈춥니다.
	P6(Up)
	운전 시영(FX)
	정속 운전 중 운전 지령(Fx 또는 Rx 단자)이 오프(Off)되거나 트립이
	발생하는 경우, 또는 전원이 차단되는 경우에 운전 중인 주파수를
	자동으로 메모리에 저장합니다.
	운전 지령이 다시 온(On)되거나 정상 상태로 복귀되면 저장되어 있는
	주파수로 운전을 계속할 수 있습니다. 저장된 주파수를 삭제할 때에는
	다기능 단자대를 이용합니다. 다기능 단자 중 하나를 22(U/D Clear)으로
	설정한 후, 정지 또는 정속 상태에서 단자에 신호를 입력하면 업-다운
ADV-65 U/D Save Mode	운전에서 저장된 주파수가 삭제됩니다.
	저장된 주파수
	출력 주파수
	P5(U/D Clear)
	P6 (Up)

응용기능

5.4 3-와이어(3-Wire) 운전

입력된 신호를 기억(Latch)하여 운전하는 기능으로, 푸시 버튼(Push Button) 등을 이용해 인버터를 운전할 때 사용합니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
DRV	07	운전 지령 방법	Cmd Source*	1	Fx/Rx - 1	0~11	-
IN	65~ 71	Px 단자 기능 설정	Px Define(Px: P1~P7)	16	3-Wire	0~55	-

3-와이어 운전 기능을 사용하려면 다음과 같이 간단한 시퀀스 회로가 필요합니다. 3-와이어 운전 시 입력 단자의 최소 입력 시간(t)은 2ms 이상이며, 정방향과 역방향 운전 지령이 동시에 입력되면 운전을 정지합니다.

\bigcirc	P1	(1): FX
\bigcirc	P2	(2) : RX
\bigcirc	P5	(16) : 3-Wire
\bigcirc	СМ	

[3-와이어 운전 시 단자 설정]

5.5 안전 운전 모드

Г

운전 지령을 내릴 때 안전 운전 모드로 설정한 다기능 단자에 신호가 온(On)되어야 비로소 운전 지령이 실행됩니다. 다기능 단자를 통해 신중하게 인버터 운전을 제어할 때 사용합니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
ADV	70	안전 운전 선택 여부	Run En Mode	1	DI Dependent	0~1	-
	71	안전 운전 정지 방법	Run Dis Stop	0	Free-Run	0~2	-
	72	안전 운전 감속 시간	Q-Stop Time	5.0		0.0~600.0	sec
IN	65~71	Px 단자 기능 설정	Px Define(Px: P1~P7)	15	RUN Enable	0~55	-

안전 운전 모드 설정 상세

코드 및 기능	설명							
IN-65~71 Px Define	다기능 15(RU	다기능 단자 중에서 안전 운전 모드를 운전할 단자를 선택한 다음 15(RUN Enable)으로 설정합니다.						
ADV-70 Run En	설정 0	Always Enable	기능 안전 운전 모드 기능이 동작하지 않도록 하니다					
Mode	1 DI Dependent		다기능 입력 단자에 의해 운전 지령을 인식하도록 합니다.					

코드 및 기능	설명				
	안전 운전 모드로 설정한 다기능 입력 단자가 오프(Off)되었을 때 인버터의 동작을 설정합니다. 안전 운전 모드 입력 단자가 해제가 되면 Q-Stop Time 으로 감속하며, 운전 지령 해제나 OFF 상태가 선택되면, Dec Time 으로 정지합니다.				
	설정		기능		
	1	Free-Run	다기능 단자가 오프(Off)되면 인버터 출력을 차단합니다.		
ADV-71 Run Dis Stop	2	Q-Stop	안전 운전 모드에서 사용하는 감속 시간(Q- Stop Time)으로 감속 후 정지합니다. 정지한 후에는 다기능 단자가 온(On) 상태가 되어도 운전 지령을 다시 입력해야 운전이 가능합니다.		
	3	Q-Stop Resume	안전 운전 모드 감속 시간(Q-Stop Time)으로 감속 후 정지합니다. 정지한 후에는 운전 지령이 온(On)인 상태에서 다기능 단자가 다시 입력되면 정상 운전을 계속합니다.		
ADV-72 Q-Stop Time	을 1(Q-Stop)이나 2(Q-Stop Resume)로 설정한 영합니다.				

٦

5.6 드웰(Dwell) 운전

Г

사용자가 설정한 가/감속 드웰 주파수 및 드웰 시간에 따라 인버터는 다음과 같이 동작합니다.

- 가속 드웰 운전: 운전 지령이 입력되면 기존에 설정된 가속 시간에 따라 가속 드웰
 주파수까지 가속한 후, 가속 드웰 운전 시간(Acc Dwell Time) 동안 정속 운전합니다. 가속
 드웰 운전 시간이 경과하면 다시 기존에 설정된 운전 속도와 가속 시간에 따라
 가속합니다.
- 감속 드웰 운전: 정지 지령이 입력되면 감속 드웰 주파수까지 감속하여 감속 드웰 운전 시간(Dec Dwell Freq) 동안 정속 운전하고, 설정 시간이 경과하면 다시 기존 감속 시간에 따라 감속 후 정지합니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
ADV	20	가속 시 드웰 주파수	Acc Dwell Freq	5.00	시작 주파수 ~최대 주파수	Hz
	21	가속 시 드웰 운전 시간	Acc Dwell Time	0.0	0.0~10.0	sec
	22	감속 시 드웰 주파수	Dec Dwell Freq	5.00	시작 주파수 ~최대 주파수	Hz
	23	감속 시 드웰 운전 시간	Dec Dwell Time	0.0	0 .0~ 60.0	sec

참고

드웰 운전이 동작하지 않는 경우

- 드웰 운전 시간이 0(sec)이거나 드웰 주파수가 0(Hz)으로 설정되어 있으면 드웰 운전이 동작하지 않습니다.
- 가속 드웰 운전 지령은 최초 지령 시 한 번만 유효하므로, 정지(감속) 중에 가속
 드웰 주파수를 지나 다시 가속하는 경우에는 동작하지 않습니다.

[가속 드웰 운전 시]

 감속 드웰 운전은 매번 정지 지령이 입력될 때마다 감속 드웰 주파수를 통과할 때 동작하지만, 운전 정지에 의한 감속이 아닌 단순 주파수 감속의 경우에는 감속 드웰 기능이 동작하지 않습니다.

5.7 슬립(Slip) 보상 운전

슬립(Slip)이란 설정 주파수(동기 속도)와 모터의 실제 회전 속도 간의 편차를 의미합니다. 부하가 증가하게 되면 모터의 회전 속도와 설정 주파수 사이에 차이가 발생할 수 있으므로, 이 같은 속도 편차를 보상할 필요가 있는 부하에 사용합니다.

그룹	코드	명칭	LCD 표시		성 값	설정 범위	단위
DRV	09	제어 모드	Control Mode	1	Slip Compen	-	-
	14	모터 용량	Motor Capacity	9	5.5kW	0~30	-
	11	모터 극수	Pole Number	4		2~48	-
	12	정격 슬립 속도	Rated Slip	40(5.5kW 기준)		0~3000	Rpm
DAG	13	모터 정격 전류	Rated Curr	3.6(5.5kW 기준)		1.0~1000.0	А
BAS	14	모터 무부하 저르	Noload Curr	1.6(5.5kW 기준)		0.5~1000.0	A
	16	모터 효율	Efficiency	72(5.5kW 기준)		70~100	%

슬립 보상 운전 설정 상세

Γ

코드 및 기능	설명					
DRV-09 Control	슬립 보상 운전을 사용하려면 DRV-09 코드를 2(Slip Compen)로					
Mode	설정합니다.					
DRV-14 Motor	인버터에 연결된 모터 용량을 설정합니다.(설정 가능한 최대 모터					
Capacity	용량은 인버터 용량으로 제한되어 있습니다.)					
BAS-11 Pole Number	모터 명판에 있는 극(Pole) 수를 입력합니다.					
	[모터 정격 회전수 – 모터 명판 회전수]를 입력합니다.					
BAS-12 Rated Slip	※ 모터 정격 회전수[rpm] = $\frac{120 \times f_r}{P}$					
	- <i>f_r</i> =정격 주파수, P=모터의 극수					
BAS-13 Rated Curr	모터 명판에 있는 정격 전류를 입력합니다.					
	모터 축에 연결된 부하 장치를 제거하고 모터를 정격 주파수로					
BAS-14 Noload	운전했을 때 측정된 전류를 입력합니다. 무부하 전류의 측정이					
Curr	어려운 경우에는 모터 정격 전류의 30~50%에 해당하는 전류 값을					
	입력합니다.					
BAS-16 Efficiency	모터 명판에 있는 효율을 입력합니다.					

5.8 PID 제어

여러 자동 제어 방식 중 가장 흔히 사용되는 방식으로, 비례(Proportional), 적분(Integral), 미분(Differential)의 3 가지 조합을 이용한 제어를 의미합니다. PID 제어를 사용하면 자동화 시스템을 보다 유연하게 제어할 수 있습니다.

인버터의 운전과 관련하여, PID 제어를 통해 수행할 수 있는 기능은 다음과 같습니다.

용도	기능
속도 제어	제어할 기기나 장비의 현재 속도를 피드백하여 일정한 속도를
(Speed Control)	유지하거나 목표 속도로 운전하도록 속도를 제어합니다.
압력 제어	제어할 기기나 장비의 현재 압력 수치 정보를 피드백하여
(Pressure Control)	일정한 압력을 유지하거나 목표 압력을 유지하도록 제어합니다.
유량 제어	제어할 기기나 장비의 현재 유량 수치 정보를 피드백하여
(Flow Control)	일정한 유량을 유지하거나 목표 유량을 유지하도록 제어합니다.
온도 제어	제어할 기기나 장비의 현재 온도 수치 정보를 피드백하여
(Temperature Control)	일정한 온도를 유지하거나 목표 온도를 유지하도록 제어합니다.

5.8.1 PID 기본 운전

인버터의 출력 주파수를 PID 운전으로 제어하면 자동화 시스템의 프로세스 제어를 통해 유량, 온도, 장력 등을 일정하게 유지할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
PID	01	PID 사용 여부	PID Sel	0	No	0~1	-
	03	PID 출력 모니터	PID Output	-		-	-

그룹	꼬	명칭	LCD 표시	설정	성 값	설정 범위	단위
	04	PID 레퍼런스	PID Ref Value	-		-	-
		모니터					
	05	PID 피드백	PID Fdb Value	-		-	_
		모니터					
	06	PID 에러 모니터	PID Err Value				
	10	PID 레퍼런스	PID Ref 1 Src	0	Keynad	0~11	-
	-	선택		_	- 71		
	11	PID 레퍼런스	PID Ref Set	Uni	t Default	Unit Min~Unit	Unit
		설정			1	Max	
	12	PID 기준 1보조	PID	0	None	0~13	-
		소스 선택	Ref1AuxSrc	_			
	13	PID 기준 1 보조	PID	0	M+(G*A)	0~13	-
1		모드 선택	Ref1AuxMod	-	· · ·		
	14	PID 기준 1 보조	PID Ref1 Aux G	0.0		-200.0~200.0	Unit
		게인					0.111
	15	PID 기준 2 소스	PID Ref 2 Src	0	KevPad	0~11	-
		선택		Ĵ		•	
	16	PID 기준 2	PID Ref 2 Set	Unit Default		Unit Min~Unit Max	Unit
		키패드 값					
	17	PID 기준 2 보조	PID	0	None	0~13	-
		소스 선택	Ref2AuxSrc	Ŭ			
	18	PID 기준 2 보조	PID	0	M+(G*A)	0~12	-
	10	모드 선택	Ref2AuxMod	Ŭ		0 12	
	19	PID 기준 2 보조	PID Ref2 Aux	00		-200 0~200 0	Unit
	10	게인	G	0.0	1	200.0 200.0	Onic
	20	PID 피드백 소스	PID Fdb Src	0	V1	0~9	
	20	선택					
	24	PID 피드백 보조	PID Fdb	0	None	0~11	
	21	소스 선택	AUXOIC				

Γ

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
	22	PID 피드백 보조	PID Fdb	0	M+(G+A)	0~13	
	22	모드 선택	AUXIVIOO				
	1 2	PID 피드백 보조	PID Fdb Aux	0.0		200.0.200.0	1.1
	23	게인	G	0.0		-200.0~200.0	Unit
	24	PID 피드백 밴드	PID Fdb Band	0		0~Unit Band	Unit
	25	PID 비례게인 1	PID P-Gain 1	50.0)	0.0 ~ 300.00	Unit
	26	PID 적분시간 1	PID I-Time 1	10.0)	0.0 ~ 200.0	sec
	27	PID 미분시간 1	PID D-Time 1	0.00)	0 ~ 1.00	sec
	28	PID 전향보상 게인	PID FF-Gain	0.0		0.0 ~ 1000.0	Unit
	29	PID 출력 필터	PID Out LPF	0.00)	0 ~ 10.00	sec
	30	PID 출력 상한	PID Limit Hi	100.00		PID Limit Lo ~ 100.00	Unit
	31	PID 출력 하한	PID Limit Lo	0.00)	-100.00 ~ PID Limit Hi	Unit
	32	PID 비례게인 2	PID P-Gain 2	5.0		0.0 ~ 300.00	Unit
	33	PID 적분시간 2	PID I-Time 2	10.0)	0.0 ~ 200.0	sec
	34	PID 미분시간 2	PID D-Time 2	0.00)	0 ~ 1.00	sec
	35	PID출력의	PID Out Mode	0		PID Out	0~3
	00	모드를 설정					
	36	PID 출력 반전	PID Out Inv	0		No	0~1
	37	PID 출력 스케일	PID Out Scale	100	.0	0.1 ~ 1000.0	Unit
	40	PID 다단 기준	PID Step Ref	l Init Default		Unit Min~Unit	Unit
		값 1	1	••••		Max	
	41	PID 다단 기준	PID Step Ref	Unit	Default	Unit Min~Unit	Unit
		값 2	2			Max	
	42	PID 다단 기준 가 2	PID Step Ref 3	Unit Default		Unit Min~Unit Max	Unit
		ᄡ 3 DID 다다 기즈					
	43	다 너 너 건 기군 값 4	PID Step Ref	Unit	Default	Unit Min~Unit Max	Unit
	44	PID 다단 기준	PID Step Ref	Unit	Default	Unit Min~Unit	Unit

٦

코드	명칭	LCD 표시	설정 값		설정 범위	단위
	값 5	5			Max	
15	PID 다단 기준	PID Step Ref	Lloit	Default	Unit Min~Unit	Lloit
40	값 6	6	Onin	Delault	Max	Onit
16	PID 다단 기준	PID Step Ref	Llnit	Default	Unit Min~Unit	ان ما ا
40	값 7	7			Max	Unit
50	PID제어기 단위	PID I Init Sol	0	0/	0~40	-
50	선택		0	70		
51	PID 제어 값	PID I Init Scale	2	X 1	0~1	-
51	스케일		2		0-4	
52	PID 제어 0%	PID Linit 0%	0.00		PID-50 설정에	
52	설정치				따라 다름	
53	PID 제어 100%	PID Init 100%	100	00	PID-50 설정에	
55	설정치		100	.00	따라 다름	
65~ 71	Px 단자 기능 설정	Px Define(Px: P1~P7)	1	none	0~55-	-
	<u>ス</u> 45 46 50 51 52 53 65~ 71	코도 명칭 45 이미 다단 기준 45 이미 다단 기준 46 이미 다단 기준 20 이미 다단 기준 46 이미 다단 기준 20 이미 다단 기준 50 이미 다단 기준 50 이미 다단 기준 51 이미 다단 기준 52 이미 지어 값 53 이미 제어 100% 53 이미 제어 100% 55~ 우자 단자 기능 55~ 우자 단자 기능 설정 실정	코드 명칭 LCD 표시 값 5 5 45 PID 다단 기준 값 6 PID Step Ref 6 46 PID 다단 기준 값 7 PID Step Ref 6 50 PID 대단 기준 값 7 PID Step Ref 6 50 PID 지아 간 선택 PID Unit Sel 51 PID 제어 값 6 PID Unit Sel 51 PID 제어 값 6 PID Unit Scale 52 PID 제어 0% 설정치 PID Unit 0% 53 PID 제어 100% 설정치 PID Unit 100% 65~ 71 Px 단자 기능 설정 Px Define(Px: 1~P7)	코드 명칭 LCD 표시 설정 χ 5 5 7 7 45 PID 다단 기준 χ 6 PID Step Ref 6 Unit 46 PID 다단 기준 χ 7 PID Step Ref 6 Unit 50 PID 대단 기준 χ 7 PID Step Ref 6 Unit 50 PID 대어 가 단위 선택 PID Unit Sel 6 0 51 PID 제어 값 6 PID Unit Scale 2 0 51 PID 제어 0% 2 PID Unit 0% 2 0.00 53 PID 제어 100% 2 PID Unit 100% 2 100 65^{-} Px 단자 기능 2 Px Define(Px: 1 <pt)< td=""> 1</pt)<>	코드 명칭 LCD 표시 설공 값 1 3 5 $$ $$ 45 PD 다단 기준 3 6 PD Step Ref 3 7 Uni Default 46 PD 다단 기준 3 7 PD Step Ref 3 7 Uni Default 50 PD 지어기 단위 Δ 7 PD Unit Sel Δ 7 0 $$ 51 PD 지어 값 Δ 7 PD Unit Scale Δ 1 0 $ 51 PD 지어 값\Delta 1 PD Unit Scale\Delta 1 0 52 PD 지어 0%\Delta 3 PD Unit 0%\Delta 3 PD Unit 10%\Delta 3 $	DefinitionDefinitionDefinitionDefinitionDefinitionDefinitionDefinition43PID FFE 71% $\Delta 6$ PID Step Ref 6 $Unit Default$ Unit Min~Unit Max46PID FFE 71% $\Delta 6$ PID Step Ref 7 $Unit Default$ Unit Min~Unit Max46PID FFE 71% $\Delta 7$ PID Step Ref 7 $Unit Min~Unit$ $10 Hin Min~UnitMaxUnit Min~UnitMax50PID GRIGATION\Delta 19PID Unit Seel10 Hin Min Min Min Min Min Min Min Min Min M$

참고

Г

- Normal PID 출력 PID OUT은 양방향 극성을 가지며, PID-46(PID Limit Hi)와 PID-47(PID Limit Lo) 설정에 의해 제한됩니다. PID OUT 값의 100.0%는 DRV-20(MaxFreq) 설정 값을 기준으로 합니다.
- Unit MAX는 PID Unit 100%(PID-68)의 값이고, Unit Min 값은(2xPID Unit 0%(PID-67)-PID Unit 100%) 값, Unit Default 값은(PID Unit 100%-PID Unit 0%)/2 의 값, Unit Band값은 Unit100%-Unit 0%의 값입니다.
- PID 운전을 이용하여 운전 할 수 있는 기능은 다음과 같습니다.
 Soft Fill, Aux PID Reference Compensation, MMC, Flow Compensation, Pipe Broken.
- PID 출력이 인버터 목표 주파수로 반영이 되며 가/감속 시간에 의해 인버터 출력주파수가 됩니다.

PID 기본 운전 설정 상세

코드 및 기능	설명				
	코드 값을 1(Yes)로 설정하면 프로세스 PID에 대한 기능을 설정할				
PID-01 PID Sei	수 있습니다.				
	PID 저	어기의 현지	ㅐ 출력 값을 표시합니다 PID 그룹에서 설정한		
	단위,	게인, 스케일	일이 적용되어 표시됩니다.		
PID-04 PID Ref	PID 저	어기의 현지	ㅐ 레퍼런스 값을 표시합니다 PID 그룹에서 설정한		
Value	단위,	게인, 스케일	일이 적용되어 표시됩니다.		
PID-05 PID Fdb	PID 저	어기의 현지	ㅐ 피드백 값을 표시합니다 PID 그룹에서 설정한		
Value	단위,	게인, 스케일	일이 적용되어 표시됩니다.		
	PID 저	어기의 현지	ㅐ 레퍼런스와 피드백 값의 차이인 에러 값을		
PID-06 PID Err Value	표시힙	니다 PID _	그룹에서 설정한 단위, 게인, 스케일이 적용되어		
	표시됱	니다.			
	PID 저	어의 레퍼린	번스 입력을 선택합니다.V1 단자가 PID 피드백		
	소스(PID F/B Source)로 설정되어 있는 경우, V1은 PID 레퍼런스				
	소스(PID Ref Source)로 설정할 수 없습니다. V1을 레퍼런스 소스로				
	설정하려면 피드백 소스를 다른 항목으로 변경해야 합니다.				
	서저 기느				
	0	Keypad			
	1	V1	기계— 다자대이 10 10/ 전안 이려 다자		
	3	V2	다자대의 10~100 현급 급득 현지		
	4	12	· 근시네의 IZ 이글도그 납국 근시 IOL나르그 저아/저르 이려 다자 서저		
Src			[어글도그 현급/현규 급락 현지 골증 소입치(입)(4)기다이 때 이 20~~ 저르 이려 \/이		
			드 위지(SW4)가 1을 때 0~2011A 현규 급락, V을		
	5	Int. 485	때 0~100 전급 급락]		
	7	FieldBus	신자네의 KS-463 접탁 신자 토시 오셔 카드르 토시 지려		
	8	Pulse	중산 곱산 가드도 중산 지방		
	9		단자대의 II 필스 입력 단자(0~32kHz 필스 입력)		
	3	Output	External PID의 굴덕 값		
	10	V3	확장 IO 옵션 단자대의 V3 아날로그 입력 단자		
		U U	[아날로그 전압/전류 입력 단자 설정		
			스위치(SW2)가 I3일 때 0~20mA 전류 입력, V3일		

٦

코드 및 기능	설명						
			때 0~ 10V 전압 입력]				
PID-11 PID Ref Set	PID 저	이의 레퍼린	번스 종류(PID-10)를 0(Keypad)으로 설정한 경우,				
	에퍼닌스 값을 입덕할 수 있습니다.						
	PID 제어의 레퍼런스의 외부 입력 소스를 선택합니다. 외부 입력						
	소스를	· 선택한 경·	우 PID-10에 설정된 소스의 입력 값과 PID-13 PID				
	Ref1A	uxMod에 의	해 레퍼런스 값이 결정됩니다.				
	설정		기능				
	0	None	사용하지 않음				
	1	V1	단자대의 -10~10V 전압 입력 단자				
	3	V2	단자대의 I2 아날로그 입력 단자				
	4	12	[아날로그 전압/전류 입력 단자 설정				
			스위치(SW4)가 I일 때 0~20mA 전류 입력, V일				
PID-12 PID Ref1AuxSrc			때 0~ 10V 전압 입력]				
RenAuxore	6	Pulse	단자대의 TI 펄스 입력 단자(0~32kHz 펄스 입력)				
	7	Int. 485	단자대의 RS-485 입력 단자				
	8	FieldBus	통신 옵션 카드로 통신 지령				
	10	EPID1 Output	External PID 1의 출력				
	11	EPID1 Fdb Val	External PID 1의 피드백 값				
	12	V3	확장 IO 옵션 단자대의 V3 아날로그 입력 단자				
	13	13	[아날로그 전압/전류 입력 단자 설정				
			스위치(SW2)가 I3일 때 0~20mA 전류 입력, V3일				
			때 0~ 10V 전압 입력]				
	PID-12	의 PID Ref/	AuxSrc의 선택 값이 None 이외의 값일 경우 PID-				
	10에 1	설정된 소스	의 입력 값과 PID-12에 설정된 소스의 입력값을				
PID-13 PID Ref1	PID-13	3에서 설정한	한 수식을 이용하여 최종 레퍼런스 1의 값을 만들어				
AuxMod	낸다.						
	설정						
	0	M+(G*	A)				

Γ

코드 및 기능	설명						
	2	M/(G*/	A)				
	3	M+(M*	(G*A))				
	4	M+G*2	M+G*2*(A-50)				
	5	M*(G*:	M*(G*2*(A-50))				
	6	M/(G*2	2*(A-50))				
	7	M+M*(G*2*(A-50)				
	8	(IVI-A)/	2				
	10						
	11	MIN(N	I.A)				
	12	(M+A)/	/2				
	13	Square	e Root(M+A)				
	M = PIC	D-10에서 설	경된 소스에 의한 값				
	G = PID	D-14에서 설	·정된 게인 값				
	A = PID	-12에서 설	정된 소스에 의한 값				
PID-14 PID Ref1 Aux G	PID-13의 수식에 필요한 게인 값						
	PID 제어의 피드백 입력을 선택합니다. V1 단자가 PID 피드백						
	소스(PID F/B Source)로 설정되어 있는 경우, V1은 PID 레퍼런스						
	[꼬드(PID Kei Source)도 결정할 수 없습니다. Vi들 피드백 소스도						
	실성아	려면 레퍼턴	1스 소스들 나툰 양목으로 면경해야 압니나.				
	설정		기능				
	0	V1	단자대의 -10~10V 전압 입력 단자				
	2	V2	단자대의 I2 아날로그 입력 단자				
PID-20 PID Fdb	3	12	[아날로그 전압/전류 입력 단자 설정				
SIC			- 스위치(SW4)가 I일 때 0~20mA 전류 입력,V일				
			때 0~ 10V 전압 입력]				
	4	Int. 485	단자대의 RS-485 입력 단자				
	5	FieldBus	통신 옵션 카드로 통신 지령				
	7	Pulse	단자대의 TI 펄스 입력 단자(0~32kHz 펄스 입력)				
	8	EPID1 Output	External PID 1의 출력 값				
	9	EPID1 Fdb Val	External PID 1의 피드백 값				

코드 및 기능	설명					
	PID 제어의 레퍼런스의 외부 입력 소스를 선택합니다. 외부 입력					
	Ref1AuxMod에 의해 레퍼런스 값이 결정됩니다.					
	설정		기능			
	0	None	사용하지 않음			
	1	V1	단자대의 -10~10V 전압 입력 단자			
	3	V2	단자대의 I2 아날로그 입력 단자			
	4	12	[아날로그 전압/전류 입력 단자 설정			
AuxSrc			스위치(SW4)가 I일 때 0~20mA 전류 입력, V일			
			때 0~ 10V 전압 입력]			
	6	Pulse	단자대의 TI 펄스 입력 단자(0~32kHz 펄스 입력)			
	7	Int. 485	단자대의 RS-485 입력 단자			
	8	FieldBus	통신 옵션 카드로 통신 지령			
	10	EPID1	External PID 1의 출력			
	11	EPID1 Fdb Val	External PID 1의 피드백 값			
	PID-31의 PID RefAuxSrc의 선택 값이 None 이외의 값일 경우 PID-					
	30에 1	설정된 소스	의 입력 값과 PID-31에 설정된 소스의 입력값을			
	PID-32에서 설정한 수식을 이용하여 최종 피드백 값을 만들어 낸다.					
	설정					
	0	M+(G	*A)			
	2	M/(G*	Α)			
PID-22 PID FDB	3	M+(M	*(G*A))			
AuxMod	4	M+G*	2*(A-50)			
	5	M*(G*	2*(A-50))			
	6	M/(G*	2*(A-50))			
	7	M+M*	G*2*(A-50)			
	8	(M-A)	12 AA2			
	9		$\forall \geq$			
	11					
	12	2 (M+A)	/2			
	13	3 Squar	e Root(M+A)			

Γ

코드 및 기능	설명
	M = PID-30에서 설정된 소스에 의한 값 G = PID-33에서 설정된 게인 값 A = PID-31에서 설정된 소스에 의한 값
PID-23 PID Fdb Aux G	PID-22의 수식에 필요한 게인 값
PID-24 PID Fdb Band	레퍼런스 값에 PID-24에 설정한 PID Fdb Band에 값을 더하거나 빼주어 피드백의 상/하한값을 설정하여 피드백 값이 이 상/하한 값 이내에 존재할 때 PID 출력을 홀딩하는 역할을 한다.
PID-25 PID P-Gain1 PID-32 PID P-Gain2	레퍼런스와 피드백의 차이(에러)에 대한 출력 비율을 설정합니다. P Gain을 50%로 설정하면 에러의 50%에 해당하는 값이 출력됩니다.
PID-26 PID I- Time 1 PID-33 PID I- Time 2	누적된 에러 양을 출력할 시간을 설정합니다. 에러가 100%일 때 100% 출력이 되기까지의 시간을 설정합니다. 적분 시간(PID I- Time)을 1초로 설정한 경우, 에러가 100%일 때 1초 후에 100%가 출력됩니다. PID I Time으로 정상 상태의 오차를 줄일 수 있습니다. 다기능 단자대 기능을 24(I-Term Clear)로 설정하고 단자대를 온(On)하면 누적된 적분량이 모두 삭제됩니다. ※ PID-26, PID-33에 설정한 게인 값에 의해 PID 출력값(최종 인버터 목표 주파수)이 변동이 되며 이 PID 출력값을 만족하기 위한 운전 주파수 도달을 위한 가/감속 시간은 DRV-03, DRV-04에 따라 변동되므로 게인 값 및 가/감속 시간 설정시 영향을 고려하여 설정하십시오
PID-27 PID D-Time 1 PID-34 PID D-Time 2	에러의 변화율에 대한 출력량을 설정합니다. 미분 시간(PID D- Time)을 1ms로 설정하면 1초당 에러의 변화율이 100%인 경우 10ms에 1%씩 출력합니다.
PID-28 PID FF- Gain	설정된 목표량을 PID 출력에 더하는 비율을 설정합니다. 이 값을 조정하면 빠른 응답성을 얻을 수 있습니다.
PID-29 PID Out LPF	PID 제어기의 출력이 너무 빠르게 변하거나 오실레이션이 심해서 전체 시스템이 불안정할 때 사용합니다. 일반적으로 작은 값(초기 값은 0)을 사용해서 응답성을 높이지만, 경우에 따라서는 큰 값을

٦

코드 및 기능	설명
	사용해서 안정성을 높일 수도 있습니다. 값이 커질수록 PID
	제어기의 출력은 안정되나, 응답성이 떨어질 수 있습니다.
PID-30 PID Limit Hi, PID-31 PID Limit Lo	제어기의 출력을 제한합니다.
PID-35 PID Out Mode	PID 출력 모드를 선택함으로서 PID 연산에 의한 주파수 출력을
	내보낼 것인지, PID 연산 값에 DRV-07에 설정된 주파수 설정 소스에
	의한 값을 더해줄것인지, Entarnal PID 출력값을 더해줄 것인지를
	설정할 수 있습니다. 총 4가지 모드로 이루어져 있으며 아래 내용을
	참고 하십시오
	설정
	0 PID Output
	1 PID+Main Freq
	2 PID+EPID1 Out
	3 PID+EPID1+Main
PID-36 PID Out Inv	PID Out Inv를 Yes로 설정하게 되면 레퍼런스와 피드백의
	차이(에러)값이 피드백 – 레퍼런스 값으로 설정이 됩니다.
PID-37 PID Out Scale	제어기 출력의 크기를 조정합니다.
PID-40~46 Step Ref 1~7	IN 65~71의 다기능 입력 설정에 의해서 PID Reference를 설정됩니다.

Γ
코드 및 기능	설명					
코드 및 기능 PID-50 PID Unit Sel	설명 제어량 • 0:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	의 단위를 설정합니다 CUST 는 사용자 설정 CUST % PSI °F °C inWC inM Bar mBar Pa kPa Hz Rpm V I kW HP Mpm	· 단위일 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	니 다. m 3/m(m 3/min) m 3/h(m 3/h) l/s l/m l/h kg/s kg/m kg/h gl/s gl/m gl/h ft/s f3/s(ft3/min) f3/h (ft3/h) lb/s lb/m lb/m		
	18	ft	39	ppm		
	19	m/s	40	pps		
	20	m3/s(m 3/S)				
PID-51 PID Unit Scale PID-52 PID Unit 0 % PID-53	PID-50 PID Unit Sel에서 선택한 단위에 맞게 크기를 조정합니다. PID Unit 0% 값과 PID Unit 100% 값을 PID-50에 설정한 단위의					
PID Unit 100%						

PID 지령 블록

٢

163

응용기능

PID 피드백 블록

PID 출력 블록

Γ

응용 기능 사용하기

응용 기능

PID 출력 모드 블록

5.8.2 Soft Fill 운전

Г

Soft Fill 기능은 펌프 운전 초기에 파이프에 급격한 압력 변동이 생기지 않게 하기 위한 기능이며 운전 지령이 입력되면 설정된 주파수 AP1-21까지는 PID 제어 없이 일반 가속한 후 AP1-22 의 시간을 유지한다. AP1-22 시간을 유지한 후 유저가 설정한 AP1-23 의 Soft Fill Set 까지 피드백값이 도달하지 않으면 Soft Fill PID 를 수행한다. Soft Fill PID 동작 중 피드백이 AP1-23 Soft Fill Set 값에 도달하거나 Soft Fill PID Reference 가 AP1-23 Soft Fill Set 값에 도달할 때까지 Soft Fill PID 운전을 하며 그 이 후에는 정상 Process PID 를 시작합니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
AP1	20	Soft Fill 기능 사용 유무	Soft Fill Sel	0	No	0~1	-
	21	프리 PID 운전 주파수	Pre-PID Freq	30.00		Low Freq~ High Freq	Hz
	22	프리 PID 유지 시간	Pre-PID Delay	60.0		600.0	sec
	23	Soft Fill 탈출 값	Soft Fill Set	20.00		Unit Min~Unit Max	%
	24	Soft Fill 레퍼런스 증가량	Fill Step Set	2.00		0~Unit Band	%
	25	Soft Fill 레퍼런스 증가 주기	Fill Step Time	20		0~9999	sec
	26	Soft Fill 변화량	Fill Fdb Diff	0.00		0~Unit Band	%

Soft Fill 운전 설정 상세

코드 및 기능	설명
AP1-20 Soft Fill Sel	Soft Fill 기능의 사용 여부를 선택합니다.
	PID 제어 없이 일반 가속이 필요한 경우, 일반 가속까지의 주파수를
	입력합니다. Pre-PID Freq를 30Hz로 설정하는 경우, 제어량(PID 피드백
AP1-21 Pre-PID Freq	양)이 AP1-23 Soft Fill Set에서 설정한 크기 이상이 될 때까지 30Hz로 일반
The the they	운전을 계속합니다. 단 Pre-PID로 운전 도중 AP1-23보다 PID reference
	혹은 Feedback이 커지게 되면 Process PID운전을 바로 시작 합니다.

코드 및 기능	설명
	일반적으로 PID 제어기의 피드백 양(제어량)이 AP1-23에서 설정한 값보다
	크게 입력되면 PID 제어 운전이 시작됩니다. 그러나 AP1-22(Pre-PID
AP1-22	Delay) 값을 설정하면 AP1-23에서 설정한 값보다 작은 양의 피드백이
Pre-PID Delay	AP1-22에서 설정한 시간 동안 계속 유지되는 경우 AP1-22에 설정한 시간
Soft Fill Set	이후의 피드백 값이 Soft Fill PID Reference의 초기값이 되며 Soft Fill PID
	운전을 시작합니다. Soft Fill PID 운전을 종료하고 일반 PID 운전 하는
	조건은 피드백 값이 Soft Fill Set 이상의 값이거나 Soft Fill PID Reference
	값이 Soft Fill Set 이상인 경우이다.
AP1-24	Soft Fill PID 운전 중 Soft Fill PID Reference를 AP1-24에 설정된 값만큼
Fill Step Set	AP1-25 Fill step Time에 설정된 시간마다 증가시킵니다.
AP1-25 Fill Step Time	단 AP1-25에 설정된 시간이 경과하여도 Soft Fill PID Reference값과 그
AP1-26	때의 피드백 값의 차가 AP1-26의 Fill Fdb Diff 값보다 크면 Soft Fill PID
Fill Fdb Diff	Reference를 증가시키지 않습니다.

Soft Fill PID 운전이 끝난 후 Process PID 를 수행할 시의 PID Reference 는 PID-11 PID Ref 1 Set 값이 됩니다.

5.8.3 PID 운전 대기(Sleep) 모드

Г

일정 시간 동안 PID 운전 조건 이하의 주파수로 운전이 지속되는 경우, PID Reference 를 올려 PID 운전 대기 모드를 오래 유지할 수 있도록 부스트 운전을 한 후 PID 운전 대기(Sleep) 모드로 진입하게 됩니다. 또는, [PRT-27 Op Sel for UL] 설정에 따라 경부하 발생시 부스트 동작 없이 PID 운전 대기(Sleep)모드로 진입 하게 됩니다. PID 슬립 모드로 진입 후 PID 피드백이 PID Wakeup 레벨 이하로 내려가고 AP1-09 PID WakeUp1 DT 또는 AP1-13 PID WakeUp2 DT 에 설정된 시간 이상 입력이 유지되면 다시 PID 운전을 재개합니다. PID Wakeup 레벨은 (PID-04 PID Ref Value - AP1-10 PID WakeUp1Dev) 또는 (PID-04 PID Ref Value - AP1-14 PID WakeUp2Dev)이 됩니다.

PID 운전의 운전 대기모드에서 슬립 모드 주파수, 슬립 모드 지연 시간 및 웨이크업 편차, 웨이크업 지연 시간은 2 세트의 설정이 가능하여 다기능 입력 단자 설정 및 입력 상태에 따라 선택 가능합니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
	05	슬립 부스트 량	Sleep Bst Set	0.00		0 ~ Unit Max	Unit
	06	슬립 부스트 속도	Sleep Bst Freq	60.00		0.00, Low Freq~ High Freq	Hz
	07	PID 슬립모드 1 지연시간	PID Sleep 1 DT	20.0		0 ~ 6000.0	sec
	08	PID 슬립모드 1 주파수	PID Sleep1Freq	0.00		0.00, Low Freq~ High Freq	Hz
	09	PID 웨이크업 1 지연시간	PID WakeUp1 DT	20.0		0 ~ 6000.0	sec
AP1	10	PID 웨이크업 1 값	PID WakeUp1Dev	20.0	0	0~Unit Band	Unit
	11	PID 슬립모드 2 지연시간	PID Sleep 2 DT	20.0		0 ~ 6000.0	sec
	12	PID 슬립모드 2 주파수	PID Sleep2Freq	0.00		0.00, Low Freq~ High Freq	Hz
	13	PID 웨이크업 2 지연시간	PID WakeUp2 DT	20.0		0 ~ 6000.0	sec
	14	PID 웨이크업 2 값	PID WakeUp2Dev	20.0	0	0~Unit Band	Unit
	20	Soft Fill 기능 사용 유무	Soft Fill Sel	0	No	0~1	-

PID 운전 대기 모드 설정 상세

코드 및 기능	설명
AD1 05 Sloop Bot Sot	슬립 부스트량으로 FeedBack이 부스트 레벨(PID Reference
AP 1-05 Sleep BSI Sei	+Sleep Bst Set)에 도달해야만 Sleep Mode에 들어가게 된다.
A D1 06 Sloop Bot From	슬립 부스트 레벨에 도달시키기 위한 인버터 운전
AP 1-00 Sleep BSI Fleq	주파수입니다.
	운전 주파수가 AP1-08, AP1-12에서 설정한 주파수 이하에서
AP1-11 PID Sleep2 DT	AP1-07, AP1-11에서 설정한 시간 동안 유지되는 경우, PID Sleep
AP1-08 PID Sleep1Freq	Bst Freq까지 가속하여 Feedback이 부스트 레벨 값에 도달한 후
APT-12 PID Sleep2Freq	PID 운전 대기 모드로 들어갑니다.
AP1-09 PID WakeUp1 DT	PID 운전 대기 모드에서 PID 운전을 시작하는 기준을
AP1-10 PID	설정합니다. PID 피드백이 PID 지령치에서 AP1-10 , AP1-14에
WakeUp1Dev	설정된 값 이상 편차가 발생하고 AP1-09 또는 AP1-13에 설정된
WakeUp2Dev	시간 이상 이 상태를 유지할 경우 PID 운전을 재개합니다.
IN-65~71	Sleep Wake chg로 설정된 다기능 단자가 입력되면 PID 운전
P1~7 Define	대기 모드는 AP1-11~AP1-14 파라미터에 의해 동작합니다.

5.8.4 PID 운전 전환(PID Openloop)

다기능 단자대 중 IN-65~71 코드에서 25(PID Openloop)으로 설정한 단자가 온(On)되면 PID 운전을 멈추고 일반 운전으로 전환합니다. 단자가 오프(Off)되면 다시 PID 운전이 시작됩니다.

운전 모드	PID 운전 ◀───	일반 운전	PID운전 ◀───→	
운전 지령				
PID Openloop				

5.9 External PID

Г

기본적인 인버터 제어용 PID 이외의 PID 기능입니다. 이는 PID 출력 모드에 따라 PID 출력 값에 EPID 의 출력값이 중첩되는 것이 가능하며 Analog Output(OUT-01, OUT-07) 설정에 따라서 외부 출력도 가능합니다. EPID 제어를 통해 수행할 수 있는 기능은 다음과 같습니다.

용도	기능
	제어할 기기나 장비의 현재 속도를 피드백하여 일정한
속노 세어 (Speed Control)	속도를 유지하거나 목표 속도로 운전하도록 속도를
	제어합니다.
	제어할 기기나 장비의 현재 압력 수치 정보를 피드백하여
압력 세어 (Pressure Control)	일정한 압력을 유지하거나 목표 압력을 유지하도록
(Plessure Control)	제어합니다.
	제어할 기기나 장비의 현재 유량 수치 정보를 피드백하여
유량 제어 (Flow Control)	일정한 유량을 유지하거나 목표 유량을 유지하도록
(Flow Control)	제어합니다.
	제어할 기기나 장비의 현재 온도 수치 정보를 피드백하여
온도 제어 (Tomporture Control)	일정한 온도를 유지하거나 목표 온도를 유지하도록
	제어합니다.

응용 기능

그룹	코드	명칭	LCD 표시	CD 표시 설정값		설정 범위	단위
	00	점프 코드	Jump Code	40		1~99	
	01	EPID1 Mode 선택	EPID1 Mode	0	None	0~3	
	02	EPID1 출력 모니터 값	EPID1 Output	0.00		-100.00~100.00%	Unit
	03	EPID1 기준 모니터 값	EPID1 Ref Val	-		-	-
	04	EPID1 피드백 모니터 값	EPID1 Fdb Val	-		-	-
	05	EPID1 에러 모니터 값	EPID1 Err Val	-		-	-
	06	EPID1 지령 소스 선택	EPID1 Ref Src	0	Keypad	0–10	-
	07	EPID1 키패드 지령값	EPID1 Ref Set	Unit Min		Unit Min–Unit Max	
EPI	08	EPID1 피드백 소스 선택	EPID1 Fdb Src	0	V1	0–9	-
	09	EPID1 비례게인	EPID1 P- Gain	50.0		0.0 ~ 300.0 %	Unit
	10	EPID1 적분시간	EPID1 I- Time	10.0		0.0 ~ 200.0	Sec
	11	EPID1 미분시간	EPID1 D- Time	0.00		0 ~ 0.00	Sec
	12	EPID1 전향보상 게인	EPID1 FF- Gain	0.0		0.0 ~ 1000.0	Unit
	13	EPID1 출력 필터	EPID1 Out LPF	0		0 ~ 10.00	Sec
	14	EPID1 출력 상한	EPID1 Limit Hi	100	.00	EPID1 Limit Lo ~ 100.00	-
	15	EPID1 출력 하한	EPID1 Limit Lo	0.00		-100.00 ~ EPID1 Limit Hi	-
	16	EPID1 출력 반전	EPID1 Out Inv	0	No	0~1	-
	17	EPID1 단위	EPID1 Unit Sel	1:%		EPID Unit 상세표 참조	-

그룹	코드	명칭	LCD 표시	설정값			설정 범위	단위
	18	EPID1 단위 Scale	EPID1 Unit Scl	2:X1			0 : X100 1 : X10 2 : X1 3 : X0.1 4 : X0.01	-
	19	EPID1 단위 0%값	EPID1 Unit0% [nit 설정에 :라 다름		X100 : -32000 ~ Unit 100% X10 : -3200.0 ~ Unit 100% X1 : -320.00 ~ Unit 100% X0.1 : -32.000 ~ Unit 100% X0.01 :-3.2000 ~ Unit 100%	-
	20	EPID1 단위 100%값	EPID1 Unit100%	Unit 설정에 따라 다름		·정에 나름	X100 : Unit 0% ~ 32000 X10 : Unit 0% ~ 3200.0 X1 : Unit 0% ~ 320.00 X0.1 : Unit 0% ~ 32.000 X0.01 : Unit 0% ~ 3.2000	-
	31	EPID2 Mode 선택	EPID2 Mode	0	Ν	one	0~3	-
	32	EPID2 출력 모니터 값	EPID2 Output	0.00			-100.00~100.00%	Unit
	33	EPID2 기준 모니터 값	EPID2 Ref Val	-			-	-
	34	EPID2 피드백 모니터 값	EPID2 Fdb Val	-			-	-
	35	EPID2 에러 모니터 값	EPID2 Err Val	-			-	-
	36	EPID2 지령 소스 선택	EPID2 Ref Src	0 KeyPad		yPad	0~10	-
	37	EPID2 키패드 지령값	EPID2 Ref Set	Unit Min		n	Unit Min~Unit Max	Unit
	38	EPID2 피드백 소스 선택	EPID2 Fdb Src	0:		V1	0~9	-

Γ

그룹	코드	명칭	LCD 표시	설정값	설정 범위	단위
	39	EPID2 비례게인	EPID2 P- Gain	50.0	0.0 ~ 300.0	Unit
	40	EPID2 적분시간	EPID2 I- Time	10.0	0.0 ~ 200.0	Sec
	41	EPID2 미분시간	EPID2 D- Time	0.00	0 ~ 1.00	Sec
	42	EPID2 전향보상 게인	EPID2 FF- Gain	0.0	0.0 ~ 1000.0	Unit
	43	EPID2 출력 필터	EPID2 Out LPF	0	0 ~ 10.00	Sec
	44	EPID2 출력 상한	EPID2 Limit Hi	100.00	EPID2 Limit Lo ~ 100.00	-
	45	EPID2 출력 하한	EPID2 Limit Lo	0.00	-100.00 ~ EPID2 Limit Hi	-
	46	EPID2 출력 반전	EPID2 Out Inv	0:No	0 No 1 Yes	-
	47	EPID2 단위	EPID2 Unit Sel	0 :CUST	EPID Unit 상세표 참조	-
	48	EPID2 단위 Scale	EPID2 Unit Scl	2:X1	0: X100 1: X10 2: X1 3: X0.1 4: X0.01	-
	49	EPID2 단위 0%값	EPID2 Unit0%	Unit 설정에 따라 다름	X100 : -32000 ~ Unit 100% X10 : -3200.0 ~ Unit 100% X1 : -320.00 ~ Unit 100% X0.1 : -32.000 ~ Unit - 100% X0.01 :-3.2000 ~ Unit 100%	-
	50	EPID2 단위 100%값	EPID2 Unit100%	Unit 설정에 따라 다름	X100 : Unit 0% ~ 32000 X10 : Unit 0% ~ 3200.0 X1 : Unit 0% ~ 320.00 X0.1 : Unit 0% ~ 32.000 X0.01 : Unit 0% ~ 3.2000	-

참고

- EPID1~2 출력 PID OUT은 양방향 극성을 가지며, EPI-14(EPID1 Limit Hi)와 EPI-15(EPID1 Limit Lo) 설정에 의해 제한됩니다.
- Unit MAX는 EPID1(EPID2) Unit 100%의 값이고, Unit Min 값은 (2xEPID1(EPID2) Unit0%-EPID1(EPID2) Unit 100%) 값, Unit Default 값은 (EPID1(EPID2) Unit 100%-EPID1(EPID2) Unit 0%)/2 의 값

EPID 기본 운전 설정 상세

Г

코드 및 기능	설명			
	EPID1	사용 방법에	대해서 설정합니다.	
	설정		기능	
	0	None	EPID1을 사용하지 않음.	
EPI-01 EPID1 Mode	1	Always On	EPID1을 항시 동작 시킴	
	2	During Run	인버터 운전 중에만 동작 시킴	
	3	DI Dependent	단자대 입력(EPID1 Run)이 들어올 경우 동작 시킴	
	EPID	제어기의 현지	│ 출력 값을 표시합니다 EPID 그룹에서 설정한	
EPI-02 PID Output	단위, 게인, 스케일이 적용되어 표시됩니다.			
EPI-03 EPID Ref	EPID 제어기의 현재 레퍼런스 값을 표시합니다 EPID 그룹에서			
Value	설정한 단위, 게인, 스케일이 적용되어 표시됩니다.			
EPI-04 EPID1 Fdb	EPID 제어기의 현재 피드백 값을 표시합니다 EPID 그룹에서 설정한			
Value	단위, 게인, 스케일이 적용되어 표시됩니다.			
	EPID	제어기의 현지	레퍼런스와 피드백 값의 차이인 에러 값을	
EPI-05 EPID1 Err Value	표시합니다 EPID 그룹에서 설정한 단위, 게인, 스케일이 적용되어			
	표시됩니다.			
	EPID	제어의 레퍼런	스 입력을 선택합니다. V1 단자가 EPID 피드백	
	소스(EPID1 F/B Source)로 설정되어 있는 경우, V1은 EPID1 레퍼런스			
	소스(EPID1 Ref Source)로 설정할 수 없습니다. V1을 레퍼런스			
Src	소스로 설정하려면 피드백 소스를 다른 항목으로 변경해야 합니다.			
	4.7		711	
	실성 0	Kovpad	기능	
	U	кеурай	키패드	

코드 및 기능	설명					
	1	V1	단자대의 -10~10V 전압 입력 단자			
	3	V2	단자대의 I2 아날로그 입력 단자			
	4	12	[아날로그 전압/전류 입력 단자 설정			
			스위치(SW2)가 I일 때 0~20mA 전류 입력, V일			
			때 0~ 10V 전압 입력]			
	5	Int. 485	단자대의 RS-485 입력 단자			
	7	FieldBus	통신 옵션 카드로 통신 지령			
	8	Pulse	단자대의 TI 펄스 입력 단자(0~32kHz 펄스			
			입력)			
EPI-07 EPID1 Ref	EPID	제어의 레퍼린				
Set	레퍼런	스 값을 입력	할 수 있습니다.			
	레퍼런스와 피드백의 차이(에러)에 대한 출력 비율을 설정합니다.					
EPI-09 EPID1 P- Gain	P게인을 50%로 설정하면, 에러의 50%가 출력됩니다.P게인의 설정					
	범위는	0.0~1000.0%	>~1000.0%까지입니다. 이 피드백 입력을 서택한니다 V1 단자가 FPID 피드백			
	EPID	제어의 피드빅	백 입력을 선택합니다. V1 단자가 EPID 피드백			
	소스(PID F/B Source)로 설정되어 있는 경우, V1은 PID 레퍼런스					
	소스(F	PID Ref Source	e)로 설정할 수 없습니다.V1을 피드백 소스로			
	설정하려면 레퍼런스 소스를 다른 항목으로 변경해야 합니다.					
	설정		기능			
	0	Keypad	키패드			
Fdb Src	1	V1	단자대의 -10~10V 전압 입력 단자			
	3	V2	단자대의 I2 아날로그 입력 단자			
	4	12	[아날로그 전압/전류 입력 단자 설정			
			스위치(SW4)가 I일 때 0~20mA 전류 입력, V일			
			때 0~ 10V 전압 입력]			
	5	Int. 485	단자대의 RS-485 입력 단자			
	7	FieldBus	통신 옵션 카드로 통신 지령			
EPI-10 EPID1 I-	누적된	에러 양을 클				
Time	 100% 출력이 되기까지의 시간을 설정합니다. 적분 시간(EPID1 I-					

코드 및 기능	설명				
	Time)을 1초로 설정한 경우, 에러가 100%일 때 1초 후에 100%가				
	출력됩니다. EPID1 I Time으로 정상 상태의 오차를 줄일 수 있습니다.				
	다기능 단자대 기능을 42(EPID1 ITermClr) 혹은 48(EPID2 ITermClr)로				
	설정하여 EPID1, 혹은 EPID2 의 누적 된 적분량을 삭제할 수				
	있습니다.				
	에러의 변화율에 대한 출력량을 설정합니다. 미분 시간(EPID1 D-				
EPI-11 EPI1 D-Time	Time)을 1ms로 설정하면 1초당 에러의 변화율이 100%인 경우				
	10ms에 1%씩 출력합니다.				
EPI-12 EPID1 FF-	설정된 목표량을 EPID 출력에 더하는 비율을 설정합니다. 이 값을				
Gain	조정하면 빠른 응답성을 얻을 수 있습니다.				
	EPID 제어기의 출력이 너무 빠르게 변하거나 오실레이션이 심해서				
	전체 시스템이 불안정할 때 사용합니다. 일반적으로 작은 값(초기				
EPI-13EPID1 Out	값은 0)을 사용해서 응답성을 높이지만, 경우에 따라서는 큰 값을				
	사용해서 안정성을 높일 수도 있습니다. 값이 커질수록 EPID				
	제어기의 출력은 안정되나, 응답성이 떨어질 수 있습니다.				
EPI-14 EPID1 Limit Hi, EPI-15 EPID1 Limit Lo	제어기의 출력을 제한합니다.				
EPI-16	EPID1 Out Inv를 Yes로 설정하게 되면 레퍼런스와 피드백의				
EPID1 Out Inv	차이(에러)값이 피드백 –레퍼런스 값으로 설정이 됩니다.				

Γ

코드 및 기능	설명						
	제어량의 단위를 설정합니다.						
	│ • ○·CUST 느 사요자 선전 다의인니다						
	· ···································						
]					
	0	CUST	21	m 3/m(m 3/min)			
	1	%	22	m 3/h(m 3/h)			
	2	PSI	23	l/s			
	3	۴F	24	l/m			
	4	°C	25	l/h			
	5	inWC	26	ka/s			
	6	inM	27	kg/m			
EPI-17 EPID1 Unit	7	Bar	28	kg/h	-		
Sel	8	mBar	29	gl/s			
	9	Ра	30	gl/m			
	10	kPa	31	gl/h			
	11	Hz	32	ft/s			
	12	Rpm	33	f3/s(ft3/min)			
	13	V	34	f3/h (ft3/h)			
	14	1	35	lb/s			
	15	kW	36	lb/m			
	16	HP	37	lb/m			
	17	Mpm	38	lb/h			
	18	ft	39	ppm			
	19	m/s	40	pps			
	20	m3/s(m 3/S)					
EPI-18 EPID1 Unit Scl	EPI-17 EPI1 Unit Sel에서 선택한 단위에 맞게 크기를 조정합니다.						
EPI-19 EPID1 Unit 0 %	EPID1	Unit 0% 값과 EPID1 l	Jnit 10	0% 값을 EPI1-17에 실			
EPI-20 EPID1 Unit	최소값	회대값을 설정합니다	ŀ.				

EPID1 제어 블록

٢

LSELECTRIC | 179

EPID2 제어 블록

5.10 댐퍼 운전

Г

Fan 에서 통풍구의 바람 조절 창치인 Damper 가 있는 경우 인버터에서 운전 신호가 인가되었을 경우 Damper 위 개/폐 상태의 신호(Damper(릴레이 입력))를 보고 운전 할 수 있습니다. 기본 동작은 운전 지령과 다기능 입력(IN-65~71)의 Damper Open(45)신호가 인가되면 정상운전 합니다. 운전 지령과 다기능 입력의 Damper Open 신호 사이의 시간이 유저가 설정한 시간 이상이 되면 "Damper Err" 고장이 발생합니다. 이 기능은 다기능 출력(OUT-31~35)의 Damper Control(33)과 다기능 입력의 Damper Open 신호와 조합하여 사용할 수 있으며 다기능 출력의 Damper Control 신호를 사용하지 않아도 동작 가능합니다. Damper Open, Damper Control 이 설정되어 있는 경우 인버터가 정지 지령에 의해 Damper Control 신호가 Off 된 상태에서 Damper DT 이상 시간 동안 Damper Open 신호가 On 상태를 유지할 경우 Damper Err 고장이 발생합니다.

그룹	코드	명칭	LCD 표시	설정값	설정 범위	단위
AP2	45	Damper check time	Damper DT	-	0.1–600.0	sec
IN	65-71	P1–7 Px terminal configuration	P1–P7 Define	45 (Damper open)	-	-
OUT	31-35	Multi-function relay 1–5	Relay 1–5	33 (Damper Control)	-	-

Damper 운전 설정 상세

코드 및 기능	설명				
	Damper Open 체크 시간을 설정합니다.				
AD2 45 Domoor DT	운전지령이 먼저 들어오거나, Damper Open 신호가 들어오거나 두 신호				
AP2-45 Damper DT	ኝ에 먼저 들어오는 신호를 기준으로 시간을 체크하며 AP2-45에 설정한				
	이상의 시간이 경과하면 "Damper Err" 고장을 발생합니다.				
IN-65~71 P1~8 define	Damper Open(45)신호를 선택해야만 Damper 운전이 활성화 됩니다.				
OUT-31~35 Relay	Damper Control (33)신호를 선택하게 되면 운전 지령이 On 될시에				
1~5	릴레이 출력을 On 시키게 됩니다.				

참고

• Damper 기능은 시스템 구성상 필요한 기능으로 AUTO / HAND 모드에서 사용가능합니다.

5.11 루브리케이션(Lubrication)

인버터 운전 지령이 들어오면 다기능 출력을 이용하여 Lubrication 신호를 출력한다. 신호 출력 시점에서부터 유저가 설정한 Lubrication 시간 이후 Lubrication 신호가 Off 되면 바로 인버터 운전을 시작한다.

그룹	코드	명칭	LCD 표시	설정값	설정 범위	단위
AP2	46	Lubrication operation time	Lub Op Time		0.1–600.0	(sec)
OUT	31-35	Multi-function relay 1–5	Relay 1–5	33 (Damper Control)	-	-

Lubrication 운전 설정 상세

코드 및 기능	설명
AP2-46 Lub Op	운전 지령이 들어온 후 AP2-46에 설정된 시간만큼 릴레이 출력으로
Time	Lubrication 신호를 출력시킨 후 그 이후에 정상 운전을 합니다.
OUT-31~35 Relay 1~5	Lubrication(30)신호를 선택해야만 Lubrication 기능이 활성화 됩니다.

참고

٢

- Lubrication 기능은 운전 지연 기능으로도 사용가능합니다. 릴레이 출력을 Lubrication 설정을 한 후에 Lub Op Time을 설정하면 인버터 지령 신호가 들어올 때마다 Lub Op Time 이후에 운전을 시작하기 때문에 사용자의 작업 환경에 따라서 운전 지연 기능으로 사용할 수 있습니다.
- Lubrication 기능은 시스템 구성상 필요한 기능으로 AUTO/HAND 두 모드에서 사용 가능합니다..

5.12 유량 보상(Flow Compensation)

파이프 길이가 긴 경우 파이프 내의 압력 손실이 발생하고 그 손실은 유량이 많을수록 커지게 됩니다. 이 손실을 보상하기 위해서 인버터 PID Reference 에 손실 보상이 가능할 만큼의 레퍼런스 양을 추가 증가시켜 압력 손실을 보상하게 해주는 기능입니다.

그룹	꼬니	명칭	LCD 표시	설정값	설정 범위		단위
	30	Flow Comp	Elow Comp Sol		0	No	
AP1	30	function options	Flow Comp Sei	-	1	Yes	-
	31	Max Comp amount	Max Comp Value	-	0–Unit Band		-

유량 보상 운전 설정 상세

코드 및 기능	설명
AP1-30 Flow Comp Sel	유량 보상 기능의 사용 여부를 설정합니다.
AP1-31 Max	인버터에서 보상할 수 있는 최대 보상량을 설정합니다. 이 기능은
Comp Value	PID 기능을 기본으로 하고 있으며 설정량은 PID 단위로 설정합니다.

위 그림과 같이 파이프가 길어지면 길어질수록 실제 압력은 압력 레퍼런스 값보다 적어지게 됩니다. 이는 유량이 크게되면 동일한 길이의 파이프여도 압력의 손실은 더 커지게 됩니다. 위의 그림에 서 보는 것과 같이 유량의 크기가 크게 되면 동일한 길이의 관에서도 유량이 적은 경우의 압력차(A)와 유량이 큰 경우의 압력차(B)가 서로 다른 것을 볼 수 있습니다. 위의 압력 손실을 보상하기 위해서 유저가 설정한 AP1-31 의 값은 인버터 최대 주파수일 때 최대 보상량으로 설정하고 출력 주파수에 따른 보상량을 다음과 같이 계산하여 추가적으로 PID 레퍼런스에 더해줍니다. PID 최종 레퍼런스는 = PID-11+Compensation amount 가 되고 보상량은 다음과 같습니다.

 $Compensation amount = \frac{Out Freq - Start Freq}{MaxFreq - Start Freq} * (PID-53) * \frac{(AP1 - 31)}{100\%}$

PID-53: PID 출력 최대값

5.13 에너지 절감량 표시(Payback Counter)

Г

인버터를 사용하여 모터 운전 시의 평균 에너지와 상용 운전으로 운전 시의 평균 에너지를 비교하여 인버터 사용시 사용운전에 비하여 얼마만큼의 에너지를 저감했는지를 표시하는 기능입니다. 절약된 에너지는 KWh, 절감된 에너지 비용, CO2 저감량으로 표시가 가능합니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
	87	1st MOTOR 평균 POWER	M1 AVG PWR	인버터 용량	0.1 -	- 90.0	KW
	88	2nd MOTOR 평균 POWER	M2 AVG PWR	인버터 용량	0.1 -	~ 90.0	kW
	89	kWh당 비용	Cost per kWh	0	0.0 ~	- 1000.0	kW
	90	kWh 에너지 절감량	Saved kWh	0	-999.9~999.9		kWh
	91	MWh 에너지 절감량	Saved MWh	0	-32000~32000		MWh
AP2	92	1000단위 까지의 cost 절감량	Saved Cost1	0	-999.9~999.9		-
	93	1000단위 이상의 cost 절감량	Saved Cost2	0	-32000~32000		-
	94	절감 CO2 변환 Factor	CO2 Factor	0.5	0.1 ~ 5.0		-
	95	CO2 절감량 (Ton)	Saved CO2 - 1	0	-9999~9999		Ton
	96	CO2 절감량 (1000 Ton)	Saved CO2 - 2	0	-160~160		Ton
	97	Energy 적산 절감량 파라미터 Reset	Reset Energy	0	0 1	No Yes	

에너지 절감 값 기능 설정 상세

코드 및 기능	설명				
AP2-87 M1 AVG	제 1 모터의 평균 파워값을 셋팅합니다. 사용자가 설정하는				
PWR	셋팅값으로 에너지 절감량을 계산합니다.				
AP2-88 M2 AVG	제 2 모터의 평균 파워값을 셋팅합니다. 사용자가 설정하는				
PWR	셋팅값으로 에너지 절감량을 계산합니다.				
	1KWh당 금액을 설정합니다. 에너지 절감량에 AP2-89에 설정되어				
AP2-89 Cost per KWh	있는 값을 곱하게 되면 에너지 절감 비용이 됩니다. 이 값은 AP2-				
	92~93에 표시됩니다.				
AP2-90 Saved	에너지 절감량을 KWH로 AP2-90에 표시한 후 999.9KWh 가 되면				
AP2-91 Saved MWh	AP2-90은 0.0이 되고 AP2-91이 1MWH로 표시하게 됩니다.				
AP2-92 Saved	 에너지 절감 비용을 소수점 첫째 단위까지 AP2-92에 표시한 후				
AP2-93 Saved Cost2	999.9 가 되면 AP2-92은 0.0이 되고 AP2-93이 1로 표시하게 됩니다.				
	1MW당 CO2 절감률을 셋팅하게 되어 있습니다. 초기 값은 0.5로				
AP2-94 CO2 Factor	설정되어 있습니다. 이 절감률은 AP2-90, AP2-91에 각각 곱해져 AP2-				
	95, AP2-96에 표시하게 되어 있습니다.				
AP2-95 Saved CO2-1 AP2-96 Saved CO2-2	CO2 절감량을 AP2-95에는 Ton단위, AP2-96 kTon단위로 표시합니다.				
AP2-97 Reset Energy	에너지 절감량 파라미터를 모두 리셋 할 수 있습니다.				

참고

• 위의 에너지 절감량은 유저의 AP2-87, AP2-88의 값 등에 영향을 받기 때문에 실제의 에너지 절감량의 값과는 차이가 날 수 있으므로 유의하십시오.

5.14 펌프 클린 기능(Pump Clean)

Г

인버터를 이용하여 펌프를 운전할 시 펌프의 임펠러에 찌꺼기들이 끼게 되면 펌프의 효율을 떨어뜨리게 됩니다. 이러한 문제를 해결하기 위해 펌프의 회전 및 정지를 반복적으로 수행하여 임펠러의 찌꺼기를 제거함으로서 펌프의 수명 연장 및 펌프의 손실을 줄이기 위한 기능입니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
	15	펌프 클린 설정1	Pump Clean Mode1	0: None	0 1 2 3	None DI Defendent Output Power Output Current	-
	16	펌프 클린 설정2	PumpClean Mode2	0:None	0 1 2 3	None Start Stop Start&Stop	-
	17	펌프 클린 부하 설정	PC Curve Rate	100.0	100	.0~200.0	%
AP2	18	펌프 클린 레퍼런스 밴드	PC Curve Band	5.0	0.0~	100.0	%
	19	펌프 클린 동작 지연 시간	PC Curve DT	60.0	0~6000.0		sec
	20	펌프 클린 운전 가능 영역 유지 시간	PC Start DT	10.0	0~6	000.0	Sec
	21	정/역 변환시 0속 운전 시간	PC Step DT	5.0	1.0~6000.0		Sec
	22	펌프 클린 가속 시간	PC Acc Time	10.0	0~600.0		Sec
	23	펌프 클린 감속 시간	PC Dec Time	10.0	0~600.0		Sec
	24	정방향 스텝 유지 시간	Fwd Steady T 10.0		1.0~6000.0		Sec
	25	정방향 스텝	Fwd	30	0.00	, Low Freq~	Hz

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
		유지 주파수	SteadyFreq		High		
	26	역방향 스텝	Pov Stoody T	10.0	1.0	6000 0	Cas
	20	유지 시간	Rev Sleauy I	10.0	1.0~	-0000.0	Sec
	27	역방향 스텝	Rev	30	0.00), Low Freq~	Ц -7
	21	유지 주파수	SteadyFreq	50	High	n Freq	1 12
		펌프 클린					
28	사이의 정/역	PC Num of Steps	5	0~10		-	
	방향 스텝 개수					L	
	20	펌프 클린 기능	Repeat Num	_	_		-
	23	주기 모니터링	Mon	_			
	30	펌프 클린 반복	Repeat Num	5	0-10		
	50	횟수	Set	5	0~1		
	31	펌프 클린 완료	PC End Mode	0	0	Stop	
	51	후 동작		0	1	Run	_
	32	Pump Clean 연속 제한 시간	PC Limit Time	10	6~60		min
	33	Pump Clean 연속 제한 회수	PC Limit Num	3	0~10		-

<펌프 클린 기본 운전>

위의 펌프 클린 기능을 시작하라는 명령이 들어오게 되면 AP2-19에 설정된 시간만큼 유지 된 후에 AP2-22에 설정되어 있는 가속시간을 이용하여 AP2-25에 설정되어 있는 주파수에 도달하며 AP2-24에 설정되어 있는 시간만큼 유지 된 후에 0속으로 AP2-23의 감속 시간을 이용하여 감속합니다. 위의 동작이 AP2-28의 PC Num of Step의 한 스텝에 해당하며 AP228 에 설정되어 있는 횟수만큼 정/역 운전을 하게 됩니다. 이전 스텝이 정방향 운전이면 다음번 스텝은 역방향운전을 하게되며 스텝 변경시(정/역 변경시)AP2-21 에 설정된 시간만큼 유지된 후 다음번 스텝을 시작합니다. 이러한 스텝의 조합이 1 싸이클이 되며, 이 한 사이클을 몇 번 추가 운전할 것인지 AP2-30 에서 설정합니다. 위의 그림의 경우 AP2-28 에는 1 로 설정되어 있는 상태이며, AP2-30 은 1 가 설정되어 있는 경우입니다.

코드 및 기능	설명					
	펌프	펌프 클린을 시작 방법을 설정합니다.				
		설정	기능			
	0	None	Pump Clean 기능을 사용하지 않습니다.			
	1	DI	단자대 입력에 Pump Clean Sel(46)을			
		uerenuarit	설정하고 이 단자대가 On 될 경우 Pump			
AP2-15 RumpClean Mode			Clean기능을 수행합니다.			
Fumpclean Mode	2	Power	인버터 운전 중 정상 운전 Power 이상의			
			Power가 소모될 시 Pump Clean 기능을			
			수행합니다.			
	3	Current	인버터 운전 중 정상 운전 전류 이상의			
			전류가 소모될 시 Pump Clean 기능을			
			수행합니다			
	펌프	클린 기능은	언제 시작할 것인지를 설정합니다.			
	설경	S	기능			
	0	None	Pump Clean 기능은 AP2-20에 설정되어 있는			
			기능에 따라서만 동작합니다.			
AP2-16 RumpCloop Sol	1	Start	인버터가 운전을 시작할 때마다 Pump Clean			
FumpClean Sei			동작을 수행합니다.			
	2	Stop	인버터가 운전을 종료할 때마다 Pump Clean			
			동작을 수행합니다.			
	3	Start&Stop	인버터가 운전을 시작할 때와 종료할 때마다			
			Pump Clean 동작을 수행합니다.			

펌프 클린 기능 설정 상세

Г

코드 및 기능	설명					
	AP2-15을 Power 혹은 Current 로 설정하였을 경우 AP2-2~AP2-					
	10에 설정되어 있는 부하 특성 곡선에 AP2-17에 설정한					
	값(100[%]+AP2-17[%])을 곱하여 Pump Clean을 동작 시켜야 할					
AP2-17 PC Curve	부하 특성 곡선을 재 설정합니다. AP2-2~AP2-10기능은 Load Tune					
Rate	기능을 참고하세요.					
AP2-18 PC Curve Band	AP2-17에 의해서 만들어진 Pump Clean Load 곡선에서 인버터					
AP2-19 PC Curve	정격 전류 *AP2-18의 설정값, 모터 정격 파워 *AP2-18의					
DT	설정값을 더해주어 최종 Pump Clean Load 곡선을 만들어 냅니다.					
	만들어낸 Pump Clean Load 곡선에서 인버터 운전 상태가 Pump					
	Clean 운전으로 설정해 둔 영역에서 AP2-19시간 이상 운전					
	상태가 지속 될 경우 Pump Clean 동작을 합니다.					
	AP2-15를 Power 혹은 Current 로 설정하였을 경우 인버터 운전					
	파워 혹은 전류가 AP2-17, AP2-18에 의해서 만들어진 Pump					
AP2-20 Clean Start DT	Clean Load 부하 특성 곡선에 의해서 결정된 전류, 전력값보다 큰					
	값으로 AP2-19에 설정된 시간 이상 유지 되면 Pump Clean					
	기능을 수행합니다.					
AP2-21 Clean	Pump Clean 기능이 실행 되었을 경우, 정방향 운전에서 역방향					
Step DT	운전으로 넘어갈 시 0속에서 유지되는 시간입니다.					
AP2-22 PumpClean AccT	Pump Clean 기능을 수행하면서 주파수 가/감속시의 가/감속					
AP2-23	· 에이 이에 가이를 구 이 같지 구파구 가/ㅁㅋ지ㅋ 가/ㅁㅋ 시가은 석전하니다					
PumpClean DecT						
Steady Time	저바하 조피스 여바하 조피스에너 오파하는 나가오 서저하니다.					
AP2-26 Rev	888 구파구, 488 구파구에서 뉴지아는 시간을 걸엉합니다. 					
AP2-25 Fwd						
SteadyFreq	정방향 주파수, 역방향 주파수를 설정합니다.					
SteadyFreq						
	(가속/정속/감속)에 해당하는 한스텝을 1싸이클에 몇번을 수행할					
AP2-28 PC Num	것인지를 결정합니다. 정방향 운전도 역방향 운전도 각각 1스텝에					
of Steps	해당합니다.2스텝을 설정하면 정방향 운전 1회 역방향 운전					
	1회가 1싸이클이 됩니다.					

코드 및 기능	설명					
	펌프	펌프 클린 동작 완료 후 인버터 동작 여부를 결정합니다.				
	설경	3	기능			
AP2-31 PC End	0	Stop	펌프 클린 완료 후 인버터 정지합니다.			
Mode	1	Start	펌프 클린 완료 후 인버터는 인버터 지령 상태에			
			따라서 운전을 시작합니다. (단자대 지령이			
			들어와 있는 경우 인버터가 펌프 클린 동작			
			이전의 동작을 수행합니다.)			
AP2-29 Repeat	현재 Pump Clean 동작이 몇번째 싸이클을 수행하고 있는지를					
Num Mon	표시합니다.					
AP2-30 Repeat	AP2-21~AP2-28에서 설정한 Pump Clean 기능을 몇 싸이클 추가					
Num Set	운전할 것인지 설정합니다.					
	Pum	p Clean으∣	빈번한 동작은 시스템상의 심각한 문제일 수 있기			
Time	때문	에 AP2-32	에 설정된 시간 동안 AP2-33에 설정된 회수			
AP2-33 PC Limit	이상	의 Puml C	lean 기능이 수행될 시에 "CleanRPTErr" 고장이			
NUM	발생합니다.					

참고

- ADV-09 Run Prevent에 0:None이 아닌 값이 Forward Prev/Reverse Prev가 설정되어 있는 경우의 Pump Clean 동작은 금지되어 있는 방향의 운전을 할 시에는 AP2-24/AP2-26에 설정되어 있는 Steady Time만큼 0속을 유지합니다.
- Pump Clean 동작중 정지 방법은 OFF 키를 누르는 방법과 단자대 입력으로 Pump Clean을 동작 시킬 시 단자대 OFF로 기능을 정지 시킬 수 있습니다.
- 단자대에 의한 펌프 클린 동작은 단자대를 ON후 바로 OFF(트리거 동작)할 경우에도 Pump Clean 동작을 1회 수행하며 단자대가 ON상태를 유지할 경우에도 Pump Clean 동작을 1회 수행합니다.
- 단자대로 Pump clean 신호를 인가할 때 단자대 ON상태에서 ADV-10 Power On Run 이 YES로 설정되어 있는 경우 전원 OFF 후 ON 시키면 펌프 클린 기능을 수행합니다.
- 단자대의 트리거 상태에 의한 펌프 클린 운전 중 전원 OFF후 ON 되어 있을 경우 ADV-10 Power On Run 이 YES로 설정 되어 있어도 단자대가 OFF 상태 이기

때문에 펌프 클린을 수행하지 않습니다.

5.15 기동 및 정지 기울기 조정(Start & End Ramp)

펌프 기동 초기 운전시 펌프가 정상 운전 가능한 영역까지 빠르게 가속하거나 정지시 빠르게 감속하기 위한 기능입니다. Start&End Ramp 기능은 ADV-24 Freq Limit 가 1:Yes 로 선택 시에 동작 합니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
	40	Start & End Ramp		0.11-	0	No	
AP2	40	기울기 선택	Start&End Ramp	U:INO	1	Yes	-
	41	StartRampAcc	StartRampAcc	10.0	0~6	00.0	Sec
	42	EndRampDec	EndRampDec	10.0	0~6	00.0	Sec
	04	주파수 limit 기능	Free of Linsit	0.14	0	No	
	24	선택 여부	Freq Limit	U:INO	1	Yes	-
ADV	25	Low Freq 최저값	Freq Limit Lo	30.00	Start Freq~Max Freq		Hz
	26	Low Freq 최고값	Freq Limit Hi	60.00	Freq Limit Lo~Max Freq		Hz

펌프 가/감속 기울기 변형 운전 설정 상세

코드 및 기능	설명					
	펌프	펌프 가/감속 기울기 변형 운전 사용 여부를 결정합니다.				
AP2-40 Start&End	설정		기능			
Ramp	0	0 No 기능을 사용하지 않습니다.				
	1	Yes	펌프 기울기 가/감속 기울기 변형 운전을			
			사용합니다.			
	인버	터 기동 시 /	ADV-25에 설정되어 있는 Freq Limit Lo(펌프가 운전			
AP2-41 Start Ramp Acc	가능한 주파수)값까지 도달하는 데 걸리는 시간을 의미하며 DRV-					
	03의 가속 기울기와는 차이가 있습니다.					
AP2-42 End Ramp Dec	인버터 정지시 ADV-25에 설정되어 있는 Freq Limt Lo(펌프가 운전					

코드 및 기능	설명
	가능한 주파수)값에서 0속까지 도달하는 데 걸리는 시간을 의미하며
	DRV-03의 가속 기울기와는 차이가 있습니다.

위 그림에서 AP2-41, AP2-42 는 정지에서 ADV-25 Freq Limt Lo 까지 가속하거나 ADV-25 Freq Limt Lo 에서 정지할 때까지의 시간이며 TimeA, Time B 는 DRV-03, DRV-04 의 가속/감속 시간(가속/감속 기울기)에 의해 달라질 수 있습니다.

5.16 밸브 감속 시간 설정(Dec Valve Ramp)

감속시 유저가 설정한 Dec Valve Ramp Freq 부터 펌프가 운전 가능한 최저 주파수까지 설정해 놓은 유저가 설정하는 Dec Ramp Time 시간으로 감속하여 갑작스런 감속으로 인한 펌프의 손상을 방지하기 위한 기능으로 이는 감속시에만 적용되는 기능입니다. Dec Valve Ramp 기능은 ADV-24 Freq Limit 가 1:Yes 로 선택되어 있을 때 동작 합니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
AP2	38	감속 밸브 운전 시작 주파수	Dec Valve Freq	40.00	Low Freq~ High Freq	Hz

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위	
	39	감속 밸브 동작 시간	DecValve Time	0.0	0~6	000.0	Sec	
ADV 25	04	주파수 limit 기능	Limit Mode	0.14	0	No		
	24	· 선택 여부		U:INO	1	Yes	-	
	25	Low Freq 최저값	Freq Limit Lo	30.00	Start Freq~Max Freq		Hz	
	26	Low Freq 최고값	Freq Limit Hi	60.00	Freq Limit Lo~Max Freq		Hz	

감속 밸브 운전 설정 상세

코드 및 기능	설명				
	인버터 정지시 펌프의 손상을 막기 위해서 천천히 감속해야 하는				
AP2-38 Dec	지점의 시작 주파수를 설정합니다.AP2-38에 설정된 주파수에서부터				
Valve Freq	ADV-25에 설정되어 있는 Freq Limt Lo(펌프가 운전 가능한				
	주파수)값까지 Dec Valve Ramp 기능을 수행합니다				
	인버터 정지시 AP2-38에 설정된 주파수에서부터 ADV-25에 설정되어				
AP2-39 DecValve Time	있는 Freq Limt Lo(펌프가 운전 가능한 주파수)값까지 도달하는 데				
	걸리는 시간입니다.				

AP2-39 에 설정된 시간은 AP2-38 에 설정된 주파수에서부터 ADV-25 까지 도달하는데에 걸리는 절대적인 시간을 나타냅니다.

5.17 부하 튜닝(Load Tuning)

Г

경부하 (Under Load), 펌프 클린(Pump Clean)기능에 필요한 부하 특성 곡선을 만들기 위해 특정 지점의 부하(전류, 파워)를 센싱하여 이 두 지점을 이용하여 운전 주파수에 따른 부하 (전류, 파워) 곡선을 만들어 내는 기능입니다. 인버터에서 주파수 두 지점은 초기에는 DRV-18 Base Freq 기준의 50% 지점의 주파수와 85% 지점의 주파수가 초기값으로 설정되어 있으며 사용자가 변경 가능 합니다. 부하 튜닝 결과는 AP2-2~AP2-10까지에 표시 됩니다. 이 값 또한 사용자가 변경 가능합니다.

Load Tuning 의 최소 곡선 지점은 DRV-18 Base Freq 의 15%지점부터 그려지며 최대 곡선 지점은 Base Freq 까지 이며 Freq Limit 가 1:YES 로 선택되어 있는 경우 에는 ADV-25 Freq Limit Lo 부터 ADV-26 Freq Limit Hi 까지 입니다.

그룹	코드	명칭	LCD 표시	설정 값	설정	성 범위	단위
AP2	01	부하 곡선 튜닝	Load Tune	No	0 1	No Yes	-
	02	부하 곡선 Low Freq	Load Fit LFreq	30.00	Base Freq*15% ~Load Fit HFreq		Hz
	03	Low Freq에서의 전류량	Load Fit LCurr	40.0	0.0~200.0		%
	04	Low Freq에서의 전력량	Load Fit LPwr	30.0	0.0-	-200.0	%
	08	부하 곡선 High Freq	Load Fit HFreq	51.00	Load Fit LFreq~High Freq		Hz
	09	High Freq에서의 전류량	Load Fit HCurr	80.0	0.0~200.0		%
	10	High Freq에서의 전력량	Load Fit HPwr	80.0	0.0~200.0		%
	11	주파수에 대한 부하 전류량	Load Curve Cur	-	-		%
	12	주파수에 대한 부하 전력량	Load Curve Pwr	-	-		%

부하 튜닝 설정 상세

코드 및 기능	설명				
	시스턷] 부하 곡선을 '	인버터가 부하 튜닝을 이용하여 만들어 냅니다.		
AP2-01 Load		설정	기능		
Tune	0	None	부하 튜닝 기능을 사용하지 않습니다.		
	1	Load Tune	부하 튜닝을 시작합니다.		
AP2-02 Load Fit	부하	튜닝을 위한 첫	번째 주파수 지점을 설정합니다. 사용자가 설정		
LFreq	변경 🛛	가능합니다.			
AP2-03 Load Fit	AP2-02 주파수에서 측정한 전류와 파워를 정격 전류대비, 모터 정격				
LCurr AP2-04 Load Fit	파워 대비 %값으로 표시합니다. AP2-03, AP2-04 값은 사용자가 설정				
LPwr	변경 가능합니다.				
AP2-08 Load fit	부하 튜닝을 위한 두번째 주파수 지점을 설정합니다. 사용자가 설정				
HFreq	변경 가능합니다.				
AP2-09 Load Fit	AP2-08 주파수에서 측정전류와 파워를 정격 전류대비, 모터 정격 파워				
HCurr AP2-10 Load Fit	대비	%값으로 표시힙	니다.AP2-09,AP2-10 값은 사용자가 설정 변경		
HPwr	가능합니다.				
AP2-11 Load	AP2-1	Load Tune에서	설정 한 부하 곡선 값을 현재 춬력하는		
AP2-12 Load	주파수		터 합니다.		
Curve PWR					

아래 그림은 Load Tune 기능은 아래와 같이 AP2-02에 설정된 주파수와 AP2-09에 설정된 주파수에서 10 초간 주파수를 유지하며 전류, 파워를 측정합니다. 위의 두 지점에서 얻어진 전류 및 파워 정보를 이용하여 부하 곡선이 만들어집니다.

참고: Load Tune 기능은 인버터 운전 중 일때에는 동작하지 않습니다.

① 주의

Г

- AP2-02 부하 곡선 Low Freq 와 AP2-08 부하 곡선 High Freq 간의 차이가 작은 경우 부하 곡선이 실제 부하 곡선과 차이가 날 수 있습니다. 따라서 AP2-02 및 AP2-08 의 값은 공장 출하값에 가까운 값 사용을 추천합니다.
- 제 2 모터 사용 시 Load Tune 을 다시 하지 않는 경우 기존 모터의 부하 곡선이 적용되므로 유의하십시오

5.18 레벨 검출 기능(Level Detect)

사용자가 설정한 주파수 이상(PRT-74)으로 인버터가 운전하고 있고 검출하고자 하는 소스의 값이 사용자가 설정한 값 이상이거나 이하일 경우 트립으로 처리 혹은 릴레이 출력으로 내보내는 기능입니다. 자동 재기동 기능을 설정해 놓을 경우 LDT 고장 해제 후 운전 지령에 따라 인버터 연속 운전을 합니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
PRT	70	레벨 검출 모드 동작 선택	LDT Sel	Warning	None/Warning/Trip	
	71	레벨 검출 영역 설정	LDT Area Sel	1: Above Level	0~ 1	-
	72	레벨 검출 소스	LDT Source	0:Output Current	0~12	-
	73	레벨 검출 지연 시간	LDT Dly Time	2.0	0 ~ 9999	Sec
	74	레벨 검출 기준 설정 값	LDT Level	소스별설정	소스별설정	-
	75	레벨 검출 밴드폭	LDT Band width	소스별설정	소스별설정	-
	76	레벨 검출 주파수	LDT Freq	20.00	0.00 ~ Max Freq(Hz)	Hz
	77	레벨 검출 트립 재 시작 시간	LDT Restart DT	60.0	0.0 ~ 3000.0	Min
레벨 검출 기능 상세

코드 및 기능	설명			
	LDT 성	상황이 발성	생했을 경	9우 인버터 동작을 결정합니다.
		설정		기능
	0	0 None		한 동작도 하지 않습니다.
PRI-70 LDT Sei	1	Warning	경고	메시지를 발생합니다.
	2	Free-Run	LDT	상황 발생 시 Free-Run정지 합니다.
	3	Dec	LDT	상황 발생 시 감속 정지 합니다.
	LDT 7	기능 사용	여부 및	LDT 동작 영역을 설정합니다.
PRT-71 Level		설정	Ē	동작
Detect	1	Below	유저가	설정한 레벨 이하 동작시 LDT 검출합니다.
	2	2 Above 유저가 설정한 레벨 이상 동작시 LDT 검출합니다		
	LDT 7	기능을 적용	용한 소스	≿를 선택합니다.
	설정			기능
	0	Output Current		출력 전류로 LDT 기능을 동작합니다.
	1	DCLink Voltage		DC Link 전압으로 LDT 기능을 동작합니다.
	2	Output Voltage		출력 전압으로 LDT 기능을 동작합니다.
	3	kW		출력 파워로 LDT 기능을 동작합니다.
	4	hp		출력 파워로 LDT 기능을 동작합니다.
	5	V1		V1으로 LDT 기능을 동작합니다.
PRT-72 LDT Source	6	V2		V2로 LDT 기능을 동작합니다.
	7	12		l2로 LDT 기능을 동작합니다.
	8	PID Ref \	Value	PID 레퍼런스로 LDT 기능을 동작합니다.
	9	PID Fdb	Val	PID 피드백으로 LDT 기능을 동작합니다.
	10	PID Outp	out	PID 출력으로 LDT 기능을 동작합니다.
	11	EPID1 F	h \/al	External PID1 피드백으로 LDT 기능을
				동작합니다.
	12	EPID2 Fo	dh Val	External PID2 피드백으로 LDT 기능을
	12	20210		동작합니다.
PRT-73 LDT Dly	PRT-7	'0에 설정현	한 동작을	을 수행하기 위한 딜레이 시간을 설정합니다.

٦

코드 및 기능	설명						
Time							
	LDT 동작을 하기 위한 조건 레벨을 설정합니다.						
	각 소스별 설정	정 범위 및 Default 값은	다음과 같습니다.				
	Sourece	기본 값	설정 범위				
PRT-74 LDT Level	Output Current	정격전류	0~정격 전류의 150%				
	DCLink Voltage	350 700	0~450V (2 Type) 0~900V (4 Type)				
	Output	230	0~250 (2 Type)				
	Voltage	460	0~500 (4 Type)				
PRT-74 LDT Level	kW	인버터 정격 파워 *90%	0~인버터 정격 파워*150%				
	V1	9.00V	0.00~12.00				
	V2	9.00	-12.00~12.00				
	12	18.00	0.00~25.00				
	PID Ref 50 Value		PID Unit Min~PID Unit Max				
	PID Fdb Val 50		PID Unit Min~PID Unit Max				
	PID Output 50		-100.00%~100.00%				
	EPID1 Fdb Val	50	EPID1 Unit Min~EPID1 Unit Max				
PRT-74 LDT Level PRT-75 LDT Band Width PRT-76 LDT Freq PRT-77 LDT Restart DT	EPID2 Fdb Val	50	EPID2 Unit Min~EPID2 Unit Max				
	LDT 동작 검렬	^둘 을 해제하기 위해서 Be	elow Level 일 경우 LDT Level +				
PRT-75 LDT Band Width	LDT Band Wid	lth 이상이 되야 하며 Ab	ove Level일 경우 LDT Level –				
Band Width	LDT 동작을 하기 위한 조건 레벨을 설정합니다. 각 소스별 설정 범위 및 Default 값은 다음과 같습니다. Sourece 기본 값 설정 범위 Output 정격전류 0~정격 전류의 150% DCLink 350 0~450V (2 Type) Voltage 700 0~900V (4 Type) Output 230 0~250 (2 Type) Voltage 460 0~500 (4 Type) Voltage 460 0~204 (4 Type) Voltage 90% 0~204 (4 Type) Voltage 460 0-200 (4 Type) Voltage 90% 0~204 (4 Type) V1 9.00V 0.00~12.00 V2 9.00 -12.00~12.00 I2 18.00 0.00~25.00 PID Ref 50 PID Unit Min~PID Unit Max PID Fdb Val 50 PID Unit Min~EPID Unit Max PID Output 50 EPID1 Unit Min~EPID1 Unit Max PID Fdb 50 EPID2 Unit Min~EPID2 Unit Max LDT Fax 검출을 해제하기 위해서 Below Level 일 경우 LDT Level + LDT Band Width 이상이 되야 하며 Above Level일 경우 LDT Level + LDT Band Width 이상이 되야 하며 Above Level일 경우 LDT Level +						
PRT-74 LDT LDT 동작을 하기 위한 조건 레벨을 설정합니다. 각 소스별 설정 범위 및 Default 값은 다음과 같습니다 Sourece Output 정격전류 0~정격 전류으 DCLink 350 0-450V (2 Type) Voltage 700 0-900V (4 Typ) Output 230 0-2500 (2 Type) Voltage 460 0-500 (4 Type) Voltage 460 0-500 (4 Type) Voltage 460 0-2000 (4 Type) Voltage 460 0-2000 (4 Type) VU1 9.00V 0.00-12.00 V2 9.00 -12.00-12.00 V2 9.00 -10.00.0%-100	· 최대치의 10% 입니다.						
	LDT 동작 검렬	불을 시작한 시작 주파수·	를 설정합니다. LDT Freq의 값은				
PRI-76 LDT Fleq	LDT Source 🗦	DT Source 및 LDT Level을 고려하여 설정합니다.					
	LDT Trip이 발	생한 후 이 파라미터에 '	설정된 시간 이후에 LDT Trip이				
	해제 조건이 또	되면 자동 재기동 합니다	. LDT Restart는 LDT 해제				
PRT-77 LDT	조건이 될 때	마다 동작 합니다. PRT-7	7이 0이 아닌 HAND 모드에서는				
Restart DT	LDT Trip 발생	후 LDT 트립이 해재 될	조건이 되어 리셋 리트라이				
	동작을 하면 a	리셋만 되어 OFF 스테이	트가 되며 리트라이 하지				
	않음.(이는 HA	ND 모드 기본 동작)					

Γ

응용 기능 사용하기

<PRT-71 이 [1: Above Level] 일 경우 예>

위의 경우 출력 주파수가 PRT-76 이상이고 검출 값이 PRT-74 의 값보다 크기 때문에 LDT 동작이 수행되며 (릴레이 출력 ON), 피드백 값이 PRT-74 에서 PRT-75 에 설정한 밴드값을 뺀 값보다 작게 되면 LDT 동작이 해제 됩니다.

① 주의

- 인버터 운전 주파수가 PRT-74 이상일 경우에만 LDT 동작을 수행합니다.
- PRT-71 의 LDT Source 를 변경할 시에는 반드시 그에 따르는 파라미터 PRT-74 과 PRT-75 도 변경해 주어야 합니다.
- LDT Source 가 변경될 때, PRT-74 와 PRT-75 는 Default 값으로 초기화 됩니다
- PRT-77 LDT Restart DT 기능은 PRT-08 RST restart 동작과 별개의 동작입니다.
- LDT 조건에 만족하여 LDT -70 에 설정된 동작을 수행하기 까지 PRT-73 LDT Dly Time 시간 만큼 카운트를 하며, 이 카운트 시간을 클리어 하는 방법은 LDT 해제 조건을 만족하는 것입니다.

5.19 파이프 파손 검출 기능(Pipe Broken)

PID 운전 도중 배관 파손을 검출하는 기능입니다. 최대 출력(PID 최대 출력 혹은 설정한 최대 속도)으로 운전 중 Feedback 이 사용자가 설정한 Level 에 일정 시간동안 도달하지 못한 경우 경보를 띄우거나 트립을 발생시킵니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
PRT	60	파이프 파손 검출 설정	PipeBroken Sel	0	0 None 1 Warning 2 Free-Run 3 Dec	
	61	파이프 파손 검출 편차	PipeBroken Dev	97.5	0~100	%
	62	파이프 파손 검출 시간	Pipe Broken DT	10.0	0~6000.0	Sec
OUT	31~36	릴레이 출력 1~5	Relay1~5	28	Pipe Broken	-

파이프 파손 검출 기능 상세

Г

코드 및 기능	설명				
	Pipe Broken 검출 시 동작을 선택 합니다.				
		설정	기능		
PRT-60	0 None		어떠한 동작도 하지 않습니다.		
PipeBroken Sel	1 Warning 경고 메시지를 발생합니다.		경고 메시지를 발생합니다.		
	2	Free-Run	Pipe Broken이 발생하면 Free-Run정지합니다.		
	3	Dec	Pipe Broken이 발생하면 감속정지 합니다.		
PRT-61	Pipe Broken 검출 레벨을 설정합니다. PRT-61에 설정한 값을 PID				
PipeBroken Dev	Reference에 곱하여 검출 레벨을 설정합니다.				
PRT-62	Pipe Broken 검출 지연시간을 설정합니다. Pipe Broken 상황이 PRT-				
PipeBroken DT	62에 설정한 시간동안 유지 되어야 Pipe Broken동작을 합니다.				
OUT31~36	Pipe	Broken(28)을	설정하면, Pipe Broken상황이 발생할 경우 Relay로		
Define	출력을 내보냅니다.				

상기 그림에서 인버터 출력이 최대 출력(PID 출력이 설정한 최대 값이거나 혹은 인버터 출력 주파수가 DRV-20 에서 설정한 최대 주파수로 운전 중일 때)을 내보내고 있음에도 Feedback 이 PID-04 * PRT-61 보다 작을 경우, Pipe Broken 을 발생 시킵니다.

5.20 전동기 예열 기능(Pre-heating)

모터 혹은 펌프가 정지 상태에 있을 때 동결을 방지하기 위해 일정 전류를 투입하여 모터 혹은 펌프를 가열시키는 기능입니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
	10	초기 가열 출력	Pro Hoat I aval	20	1, 100	0/
	40	전류	류 Fie Heat Level 20 1~100	1~100	70	
AP2	40	초기 가열 출력	Pro Hoot Duty	20	1 100	0/
	49	듀티	Fie Heat Duty	30	1~100	70
	50	DC입력 지연 시간	DC inj Delay T	60.0	0.0~600.0	sec
IN	65~71	단자대 입력 1~7	P1~7 Define	44	Pre Heat	-

초기 가열 설정 상세

Г

코드 및 기능	설명
AP2-48 Pre Heat	초기 가열시 주입할 전류를 설정합니다. Pre Heat 전류는 모터 정격
Curr	전류 대비 %값으로 설정합니다.
AP2-49 Pre Heat Duty	초기 가열 시 10초 중 전류를 흘릴 듀티(시간)를 %값으로 설정합니다.
AP2-50 DC inj	인버터 Free-Run 정지 시 DC 입력이 되어 생길 수 있는 과전류
Delay T	트립을 방지하기 위해 일정 지연시간을 설정합니다.
IN-65~71 P1~7 Define	Pre Heat(44) 단자를 설정해야지만 Pre Heat 기능을 수행합니다.

초기 가열 기능은 설정된 다기능 입력 단자가 On 될 시 인버터 지령이 들어올 때까지 연속적으로 동작합니다. 초기 가열 기능 중 인버터 지령이 들어오게 되면 인버터 운전을 바로 시작 합니다.

인버터 운전 지령이 Off 된 후에 초기 가열 기능의 단자대가 On 되어 있는 경우는 인버터 운전 정지후 초기 가열 동작을 수행합니다.

위의 그림은 AP2-50 DC Inj Delay T 관련 동작파형입니다. 인버터 정지 방법이 Free Run 으로 설정되어 있고 Pre Heat 신호가 인가 되어 있는 경우 인버터 운전 지령이 들어오기 전까지는 Pre Heat 기능을 수행하고 있게 됩니다. 이후 인버터 운전 지령이 ON 되면 인버터 목표 주파수에 따라 가속, 정속 운전이 유지 되다가 운전 지령이 OFF 되면 전동기는 Free Run 상태이고 AP2-50 에 설정되어 있는 시간만큼 유지한 후에 Pre Heat 동작을 시작합니다.

①주의

- AP2-48 Pre Heat Curr 의 설정 값이 인버터 정격 전류 이상의 값일 경우 인버터 정격 전류값으로 제합됩니다.
- AP2-48 Pre Heat Curr 설정값을 크게 두거나 DC 전류 출력 시간이 길어질 경우 모터 가 과열되거나 파손될 수 있으며 인버터 IOLT 고장이 발생할 수 있습니다. 이 때 DC 출력 전류량을 줄이거나 DC 출력 시간을 줄여 사용하여 주십시오

5.21 자동 튜닝(Auto-tuning)

Г

모터 파라미터를 자동으로 측정할 수 있습니다. 측정된 모터 파라미터는 자동 토크 부스트용으로 사용합니다.

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
DRV	14	모터 용량	Motor Capacity	9	5.5 kW	0~30	-
	11	모터 극수	Pole Number	4		2~48	-
	12	정격 슬립 속도	Rated Slip	45		0~3000	Rpm
	13	모터 정격 전류	Rated Curr	21.0)	0.0~1000.0	А
	14	모터 무부하 전류	Noload curr	7.1		0.0~1000.0	A
DVC	15	모터 정격 전압	Rated Volt	220		170~480	V
DAG	16	모터 효율	Efficiency	85		70~100	%
	20	자동 튜닝	Auto Tuning	0	None	-	-
	21	고정자 저항	Rs	0.31	4	설정 모터에 따라 바뀜	Ω
	22	누설 인덕턴스	Lsigma 3.19)	설정 모터에 따라 바뀜	mH

5.5kW, 200V 급 모터 기준 자동 튜닝 예

모터 튜닝 자동 초기 설정 값

모터		정격	무부하	정격 슬립	고정자	누설
용량(Kw	')	전류(A)	전류(A)	주파수(Hz)	저항(Ω)	인덕턴스(mH)
	0.75	3.4	1.7	3.00	2.60	17.94
	1.5	6.4	2.6	2.67	1.17	2.29
	2.2	8.6	3.3	2.3	0.84	6.63
	3.7	13.8	5.0	2.3	0.50	4.48
200 V	5.5	21.0	7.1	1.50	0.314	3.19
	7.5	28.2	9.3	1.33	0.169	2.844
	11	40.0	12.4	1.00	0.120	1.488
	15	53.6	15.5	1.00	0.084	1.118
	18.5	65.6	19.0	1.00	0.0676	0.819
	0.75	2.0	1.0	3.00	7.81	53.9
	1.5	3.7	1.5	2.67	3.52	27.9
	2.2	5.0	1.9	2.3	2.52	19.95
	3.7	8.0	2.9	2.3	1.50	13.45
	5.5	12.1	4.1	1.50	0.940	9.62
	7.5	16.3	5.4	1.33	0.520	8.53
	11	23.2	7.2	1.00	0.360	4.48
	15	31.0	9.0	1.00	0.250	3.38
400 V	18.5	38.0	11.0	1.00	0.168	2.457
400 V	22	44.5	12.5	1.00	0.168	2.844
	30	60.5	16.9	1.00	0.1266	2.133
	37	74.4	20.1	1.00	0.1014	1.704
	45	90.3	24.4	1.00	0.0843	1.422
	55	106.6	28.8	1.00	0.0693	1.167
	75	141.6	35.4	1.00	0.0507	0.852
	90	167.6	41.9	1.00	0.0399	0.715
	110	203.5	48.8	1.00	0.0326	0.585
	132	242.3	58.1	1.00	0.0272	0.488

٦

모터		정격	무부하	정격 슬립	고정자	누설
용량(Kw	r)	전류(A)	전류(A)	주파수(Hz)	저항(Ω)	인덕턴스(mH)
	160	290.5	69.7	1.00	0.0224	0.403
	185	335.0	77.0	1.00	0.0210	0.380
	220	405.0	93.1	1.00	0.1630	2.930
	250	467.8	104.9	1.00	0.1455	2.615
	315	604.0	132.8	1.00	0.1140	2.040
	355	687.8	146.4	1.00	0.1020	1.820
	400	782.0	161.2	1.00	0.0906	1.616
	500	985.3	206.2	1.00	0.0700	1.330

자동 튜닝 설정 상세

Γ

코드 및 기능	설명			
DRV-14 Motor Capacity	사용할 인버터 표시됩니	모터의 용량을 용량으로 제한 니다.	을 설정합니다. 설정 가능한 최대 모터 용량은 L되며 키패드에서도 인버터 용량까지만	
	자동 튜닝의 종류를 선택하고 실행합니다. 아래 항목 중 하나를 선택한 후 [ENT] 키를 누르면 자동 튜닝이 실행됩니다.			
	설정		기능	
BAS-20 Auto Tuning	0	None	자동 튜닝 기능을 사용하지 않습니다. 자동 튜닝을 실행한 경우 자동 튜닝이 완료되었음을 나타냅니다.	
	1	All(회전형)	모터가 회전하는 상태에서 고정자 저항(Rs), 누설 인덕턴스(Lsigma), 무부하 전류(Noload Curr) 파라미터를 추정합니다. 모터가 회전하면서 파라미터를 측정하므로 모터 축에 부하가 연결되어 있는 경우에는 올바른 파라미터 측정 값을 얻지 못할 수 있습니다.	

코드 및 기능	설명		
			따라서 정확한 측정을 위해 모터 축에
			부착되어 있는 부하를 제거한 후 사용하십시오.
	2	All(정지형)	모터가 정지된 상태에서 파라미터를
			측정합니다. 고정자 저항(Rs), 누설
			인덕턴스(Lsigma), 무부하 전류(Noload Curr) 를
			측정합니다.
			모터가 회전하지 않으므로 모터 축에 부하가
			연결되어 있어도 파라미터 측정에 영향이
			없습니다. 단, 측정할 때 부하 측에서 모터
			축을 회전시키지 않도록 주의하십시오.
BAS-14 Noload	자동 튜	닝에서 측정현	한 모터 파라미터를 표시합니다.
Curr, BAS-21 Rs-BAS-	위에서	선택한 자동	튜닝 항목 중 측정 항목에 없는 파라미터는 기본
24 Tr	석정 값	윽 표시한니다	ŀ

① 주의

- 자동 튜닝은 반드시 모터가 정지한 후에 실행하십시오.
- [DRV-08 AUTO Mode Sel]이 Enabled 되어 있는 경우 자동 튜닝은 인버터 AUTO 모드의 정지 상태에서만 동작합니다.
- [DRV-08 AUTO Mode Sel]이 Disabled 되어 있는 경우 자동 튜닝은 인버터 OFF 모드 및 AUTO 모드의 정지 상태에서만 동작합니다.
- 자동 튜닝을 실행하기 전에 반드시 모터의 명판에 있는 모터 극수, 정격 슬립, 정격 전류, 정격 전압 및 효율을 확인하여 입력하십시오. 입력하지 않은 항목에는 기본 설정 값이 사용됩니다.
- BAS-20(Auto tuning)에서 2[ALL(정지형)]를 선택하여 모터가 정지된 상태에서 모든 파라미터를 측정하는 경우, 1(ALL)을 선택하여 모터를 회전시켜 파라미터를 측정하는 방식에 비해서 정확도가 다소 낮아지므로 운전 성능이 저하될 수 있습니다. 따라서 가급적 모터를 회전시킬 수 없는 경우(기어, 벨트 분리가

어렵거나 모터를 부하에서 기계적으로 분리하지 못하는 경우)에만 2[ALL(정지형)]를 선택하여 자동 튜닝을 수행하십시오.

• 모터를 연결하지 않은 상태에서 자동 튜닝을 실행하면 Rs Tune Err 또는 Lsig Tune Err 경고(Warning)발생 하고, 키패드의 STOP/RESET 키를 누르면 해제 됩니다.

5.22 스케쥴링 운전(Time Event Scheduling)

Г

Time Event 기능은 RTC(Real Time Clock) 기능을 이용하여 사용자가 하고자 하는 기능을 원하는 시간에 동작하도록 하는 기능입니다. I/O 보드에 배터리가 내장되어 있으며, 이 배터리의 수명은 Inverter Off 상태에서는 25800 시간(약 2 년 10 개월), Inverter On 상태에서는 53300 시간(약 6 년)입니다.

Time Even 를 사용하기 위해서는 기본적으로 현재 날짜와 시간을 설정해야 합니다. Time Event 기능을 사용하기 위해 설정하는 파라미터는 Time Period Module (사용자가 운전하고자 하는 시간 설정), Time Event (어떠한 동작을 수행할 것인가를 설정), Exception Date (특정 날짜 및 시간을 정하여 기능을 설정하면 수행 우선 순위가 가장 높음)를 설정해야 합니다. Time Period Module 은 총 4 개로 구성되어 있습니다. Time Event Module 은 8 개가 있으며 Exception Day 는 8 개가 있습니다. 위의 모듈들의 조합으로 Time Event 기능이 동작합니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
	01	현재 날짜	Now Date	01/01/2000	01/01/2000 ~ 12/31/2099 (Date)	Hz
	02	현재 시간	Now Time	0:00	0:00 ~ 23:59(Min)	Sec
	03	현재 요일	Now Weekday	0000001	0000000 ~ 111111(Bit)	-
AP3	04	Summer Time 시작 날짜	Summer T Start	04/01	01/01 ~ Summer T Stop	Day
	05	Summer Time 종료 날짜	Summer T Stop	11/30	Summer T Start ~ 12/31(Date)	Day
	10	Period 연결 상태	Period Status	-	-	-
	11	Time Period 1 시작 시간 설정	Period1 StartT	24:00	00:00 ~ 24:00	Min

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
	12	Time Period 1 정지 시간 설정	Period1 Stop T	24:00	Perio	d1 StartT ~ 24:00(Min)	Min
	13	Time Period 1 요일 설정	Period1 Day	0000000	00000	0000000~1111111	
	14	Time Period 2 시작 시간 설정	Period2 StartT	24:00	00:00	~ 24:00	Min
	15	Time Period 2 정지 시간 설정	Period2 Stop T	24:00	Perio	d2 StartT ~ 24:00(Min)	Min
	16	Time Period 2 요일 설정	Period2 Day	00000000	00000	000~1111111	-
	17	Time Period 3 시작 시간 설정	Period3 StartT	24:00	00:00	~ 24:00	Min
	18	Time Period 3 정지 시간 설정	Period3 Stop T	24:00	Period3 StartT ~ 24:00(Min)		Min
	19	Time Period 3 요일 설정	Period3 Day	0000000	0000000~1111111		-
	20	Time Period 4 시작 시간 설정	Period4 StartT	24:00	00:00 ~ 24:00		Min
	21	Time Period 4 정지 시간 설정	Period4 Stop T	24:00	Period4 StartT ~ 24:00(Min)		Min
	22	Time Period 4 요일 설정	Period4 Day	0000000	00000	000~1111111	-
	30	Except1 Date 시 작 시간 설정	Except1 StartT	24:00	00:00	~ 24:00	Min
	31	Except1 Date 정 지 시간 설정	Except1 Stop T	24:00	Excer 24:00	ot1 StartT ~ (Min)	Min
	32	Except1 Date 설 정	Except1 Date	01/01	01/01~12/31		Day
	33-53	Exception Date 2 조건 및 설정	~ Exception Date	8 Parameter (Except	tion Date 1과 동일	빌
	70	Time Event 기	Time Event En		0	No	
	10	능 설정			1	Yes	
	71	Time Event 설	T-Event Status	-	-		

٦

정 상태	
Time Event 1 00000000 00000000 연결 설정 T-Event1Period 00000000 00000000	000 11
0 Nc	e
1 Fx	
2 Rx	
3 Spe	d-L
4 Spe	d-M
5 Spe	d-H
7 Xce	_
8 Xce	M
9 Xce	4
10 Xce	Stop
11 Run	Enable
12 2nd	Source
13 Exc	ange
14 Ana	g Hold
Time Event 1	n Clear
73 T-Event1Define 0:None 16 PID	Dpenloop
기승 전택 <u>17</u> PID	Gain 2
18 PID	Ref Change
19 2nd	lotor
20 Tim	· In
21 Dias	Aux Ref
22 EPI	1 Run
23 EPI	1 ITerm Clr
24 Pre	leat
25 EPI	2 Run
26 EPI	2 iTerm Clr
Slee	Wake
28 PID	Step Ref L
29 PID	Step Ref M
30 PID	Step Ref H
Time Event 2 ~ Time Event 8 Parameter (Time Event 1과 동	일 설정 범위 및
74~87 大刀刀り	

Γ

Time Event 기능 설정 상세

코드 및 기능	설명					
AP3-01 Now Date AP3-02 Now Time AP3-03 Now Weekday	현재 ' Event	현재 날짜, 시간, 요일을 설정 합니다.이 시간을 기본으로 Time Event동작일 수행합니다.				
AP3-04 Summer T Start AP3-05 Summer T Stop	 썸머 타임 시작 날짜와 정지 날짜를 설정 합니다. 사용자가 설정한 Summer Time 날짜에 따라 현재 시간을 1시간 더해주거나 빼 주게 됩니다. Ex) [AP3-04 Summer T Start]가 4월 1일로 설정되어 있고, 현재 4월 1 1시 59분이면, 1분후 2시가 되지 않고 4월 1일 3시 00분이 됩니다. [AP3-05 Summer T Stop]가 12월 25일로 설정되어 있고, 현재 12월 25일 1시 59분이면, 1분후 2시가 되지 않고 12월 25일 1시 00분이 됩니다. 					
	년/월/'	일 표시 방법을 신	<u>선</u> 택합니다.			
AP3-06 Date	20 0	YYYY/MM/DD	기능 년/웤/일 순으로 표시합니다.			
format	1	MM/DD/YYYY	월/일/년 순으로 표시합니다.(미국 표현)			
	2	DD/MM/YYYY	일/월/년 순으로 표시합니다.(유럽 표현)			
AP3-10 Period Status	0~3 bi Period 되어 9 4 ~11 Excep 되어 9	t 까지는 AP3-11~ I Module 중에 현 있습니다. 번 bit 까지는 AP3 tion Date 중에 현 있습니다.	-AP3-22번까지 설정되어 있는 4개의 Time 재 사용되고 있는 Time Module 을 표시하게 3-30~AP3-53번까지 설정되어 있는 8개의 재 사용되고 있는 Exception Day를 표시하게			
AP3-11~AP3-20 Period 1~4 Start T	4개의	Time Period의 ㅅ	작 시간을 설정할 수 있습니다.			
AP3-12~AP3-21 Period 1~4 STop T	4개의	Time Period의 종	료 시간을 설정할 수 있습니다.			
AP3-13~AP3-22 Period 1~4 Day	4개의 단위로 Bit가 선택도	Time Period를 수 실정이 가능합니 1(On)이면 해당 £ 니지 않은 것입니다	*행할 날짜를 설정할 수 있습니다. 이는 일주일 니다. 요일 선택, Bit가 0(Off)이면 해당 요일은 다. Bit			

٦

코드 및 기능	설명											
	6	:	5	4		3		2	1		0	
	일요	일	월요일	화	요일	수	2일	목요일	금	요일	토요	일
AP3-30~AP3-51 Exception1~8 Start T	8개으	개의 Exception Day의 동작 시작 시간을 설정할 수 있습니다										
AP3-31~AP3-52 Exception1~8 Stop T	8개으	개의 Exception Day의 동작 종료 시간을 설정할 수 있습니다										
AP3-32~AP3-53 Exception1~8 Date	8개으	Exce	ption D	ay의	날짜를	를 설기	정할	┝ 있습니	- 다.			
	Time	Event	기능을	을 사용	할 것	인지·	를 설정	덩합니디	ŀ.			
AP3-70 Time		설정	병 기	능								
Event En	0	No	Ti	me Ev	rent フ	능을	· 사용	하지 않	습니디	ŀ.		
	1	Yes	Ti	me Ev	rent フ	능을	사용	합니다.				
	현재	T-Eve	nt 1~8 ^t	번의 E	Ivent중	등 어덕	면 Eve	ent가 진	행 중	인지를		I_
AP3-71 T-Event Status	확인합니다.											
Claids	7	6		5	4		3	2		1	0	
	T-Eve	nt 8 T-E	Event 7	T-Ever	nt 6 T-E	Event :	5 T-Eve	ent 4 T-E	vent 3	T-Even	t 2 T-E	vent 1
	해당 이벤트에 AP3-11~AP3-53에 설정되어 있는 Time Module,											
	Exception Day 중에 어떠한 모듈을 사용할 지를 설정합니다.											
	Bit가	1이면	해낭	Time I	Module	ə 옥:	≝ Exc	eption D	Day 선	.택, Bit	가 00	년
	Time	Modul	e 혹은	Exce	ption [Day는	- 선택	되지 읺	은 것	입니드	ŀ.	
AP3-72~86 1- Event1~8 Period							bit	<u>.</u>				
	11	10	9	8	7	6	5	4	3	2	1	0
	Ex	Ex	Ex	Ex	Ex	Ex	Ex	Ex	Per	Per	Per	Per
	cep	cep	cep	cep	cep	tion	cep	cep	lod ⊿	10d 3	iod 2	IOD
	Dat	Dat	Dat	Dat	Dat	Dat	Dat	Dat	4	5	2	1
	e 8	e 7	e 6	e 5	e 4	e 3	e 2	e 1				
	어떠현	한 이번	트를	수행힡	! 것인	지를	설정협	합니다.				
	설정	}										
AP3-73~87 T-	0	None				16 PID Openloop						
Event1~8 Define	1	Fx				17	PID C	Gain 2				
	2	Rx				18	PID F	Ref Chai	nge			
	3	Speed	d-L			19	2nd N	<i>Notor</i>				

Γ

코드 및 기능	설명				
	4	Speed-M	20	Timer In	
	5	Speed-H	21	Dias Aux Ref	
	6	Xcel-L	22	EPID1 Run	
	7	Xcel-M	23	EPID1 Openloop	
	8	Xcel-H	24	Pre Heat	
	9	Xcel Stop		EPID2 RUn	
	10	Run Enable	26	EPID2 Openloop	
	11	2nd Source	27	Sleep Wake Chg	
	12	Exchange	28	PID Step Ref L	
	13	Analog Hold	29	PID Step Ref M	
	14	I-Term Clear	30	PID Step Ref H	
	15	None			

Time Period 파라미터 설정

Time Event 에는 4 개의 Time Period Set 가 있습니다. 개별 Time Period Set 는 period1~4 StartT(시작시간), Period1~4 Stop T(종료시간), Period1~4 Day(운전 요일)을 설정 할 수 있습니다. 아래 그림에서는 Time Period 1, Time Period 2, Time Period 3 에 대한 파라미터 설정 값을 보여줍니다. 아래와 같이 파라미터를 설정 할 경우, Time Period 1 은 매주 일, 월, 수, 목, 금마다 06:00 에 On 되고, 18:00 에 Off 된다. Time Period2 는 매주 일, 토 마다 하루 24 시간동안 On 됩니다. Time Period 3 는 매주 일, 목, 금, 토 마다 10:00 에 On 되고, 14:00 에 Off 됩니다.

Time Period 1				Time Period 2			Time Period 3			
AP3-11	Period1StartT	06:00	AP3-14	Period2StartT	00:00	AP3-17	Period3StartT	10:00		
AP3-12	Period1Stop T	18:00	AP3-15	Period2Stop T	24:00	AP3-18	Period3Stop T	14:00		
AP3-13	Period1 Day	1101110	AP3-16	Period2 Day	1000001	AP3-19	Period3 Day	1000111		

< Time Period 설정>

Exception Date 파라미터 설정

ſ

Time Event 에는 8 개의 Exception Date 설정 모듈이 있으며, 이는 특정한 날짜(공휴일 등)의 동작을 지정하기 위해 사용됩니다. 시작 시간, 정지 시간의 설정은 Time Period 모듈의 설정과 동일하며 특정 날짜를 지정 할 수 있습니다. Time Period 모듈과의 중복 설정이 가능하며 같은 Exception Date 모듈끼리도 중복 설정이 가능합니다. Time Period 와 Exception Date 모듈이 중복 설정된 경우, Exception Date 의 설정만 유효하게 동작합니다.

타이틀	설정 범위	비고
Except1~8 StartT	00:00~24:00	시간 : 분 (분 단위로 설정)
Except1~8 Stop T	00:00~24:00	시간 : 분 (분 단위로 설정)
Except1~8 Date	1/1~12/31	1/1 부터 12/31 중 특정한 날짜를 설정

	Except Date 1	
AP3-30	Except1 StartT	06:00
AP3-31	Except1 Stop T	18:00
AP3-32	Except1 Date	12/25

Except Date 2								
AP3-33	Except2 StartT	00:00						
AP3-34	Except2 Stop T	24:00						
AP3-35	Except2 Date	1/1						

<Time Chart 로 그린 Exception Day >

Time Period 와 Time Event 연결 설정

Г

Time Event 기능 에는 8 개의 Time Event 모듈이 있습니다. 각 모듈은 Time Period 모듈, Exception Date 모듈과 연결 설정 하는 파라미터(T-Event1~8 Period)와 그 일정에 동작할 기능을 설정(T-Event1~8Define)하는 파라미터로 구성되어 있습니다. 각 Time Event 모듈은 4 개의 Time Period 모듈과 8 개의 Exception Day 와 연결 설정이 가능하며 T-Event1~8Define 파라미터에서 Bit 단위로 설정하게 되어 있습니다. 아래 그림에는 Time Event 모듈들과 Time Period 가 어떻게 연결되는지 나타내었습니다. Time Event 1 의 경우 Time Period 4 연결되어 있고 Time Event8 의 경우 Time Period 1,2,3,4 와 Exception date 2 와 연결 되어 있습니다.

Time Event 모듈 기능 설정

T-Event 1~8 Define 에서 Time Event 모듈에서 수행할 기능을 설정 할 수 있다. 설정 가능한 기능의 개수는 30 개이며(<u>213 페이지 참조</u>), 8 개의 Time Event 모듈이 있습니다. 각 모듈은 Time Period 모듈, Exception Date 모듈과 연결 설정 하는 파라미터(T-Event1~8 Period)와 그 일정에 동작할 기능을 설정(T-Event1~8Define)하는 파라미터가 존재합니다.

Time Event 동작 예

다음의 표와 같이 Time Event 을 설정하였을 시 밑에 있는 그림과 같은 동작을 수행합니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
	06	운전 지령 방법	Cmd Ref Src	5: Time Event	0~9	-
DRV	07	주파수 지령 방법	Freq Ref Src	0: KeyPad	0~11	-
	11	Time Period 1 시작 시간 설정	Period1 StartT	10:00	00:00 ~ 24:00	Min
	12	Time Period 1 정지 시간 설정	Period1 Stop T	20:00	00:00 ~ 24:00	Min
	13	Time Period 1 요일 설정	Period1 Day	0110000	0000000~1111111	
	14	Time Period 2 시작 시간 설정	Period2 StartT	12:00	00:00 ~ 24:00	Min
	15	Time Period 2 정지 시간 설정	Period2 Stop T	17:00	00:00 ~ 24:00	Min
	16	Time Period 2 요일 설정	Period2 Day	00100000	0000000~1111111	-
	70	Time Event 기 능 설정	Time Event En	1: YES	0 No 1 Yes	-
AP3	72	Time Event 1 연 결 설정	T-Event1Period	00000000001	000000000001~11111 1111111	
	73	Time Event 1 기 능 선택	T-Event1Define	1:Fx	0None1Fx2Rx3Speed-L4Speed-M5Speed-H7Xcel-L8Xcel-M9Xcel-H10Xcel Stop11Run Enable122nd Source13Exchange14Analog Hold15I-Term Clear16PID Openloop17PID Gain 218PID Ref Change	

٦

					19	2nd Motor	
					20	Timer In	
					21	Dias Aux Ref	
					22	EPID1 Run	
					23	EPID1 ITerm Clr	
					24	Pre Heat	
					25	EPID2 RUn	
					26	EPID2 ITerm Clr	
					27	Sleep Wake Chg	
					28	PID Step Ref L	
					29	PID Step Ref M	
					30	PID Step Ref H	
	Time Event 2 연				00000000001~1111		
	74	결 설정	I-Event1Period	00000000010	111	1111	
	75	Time Event 2 7	T-Event2Define	3.Speed-l	AP	3-73 착조	
15		능 선택	5.5p 550 E				
				•			

Г

위의 표의 파라미터는 주파수 지령 방법은 키패드 지령이고 운전 지령은 Time Event 입니다. Time Period 모듈 1,2 번을 사용했으며 Time Event 1,2 를 사용하였습니다.

Time Period 1 은 월요일, 화요일 양일간 오전 10 시부터 오후 8 시까지 동작하는 모듈이다. Time Period 2 는 화요일 낮 12 시부터 오후 5 시까지 동작하는 모듈이다.

Time Event 는 FX 운전에 해당되며 Time Period 1 과 연결되어 있어 Time Period 에 설정된 시간 동안 FX 운전을 하게 된다. Time Event 2 는 Speed-L 운전이며 Time Period 2 와 연결되어 있어 Time Period 모듈 2 에 설정된 시간 동안 Speed-L 운전을 수행한다. 월요일은 오전 10 시부터 오후 8 시까지 키패드 파라미터에 설정된 주파수로 Fx 운전을 하며, 화요일은 오전 10 시부터 정오 12 시까지는 키패드로 설정된 주파수로 Fx 운전을 수행하며 정오부터 오후 5 시까지는 Speed-L 주파수로 운전하며 그 뒤에는 키패드 설정 주파수로 운전을 하게 된다.

응용 기능 사용하기

<Time Event 예>

참고

Time Event 기능 수행 중 주파수 지령과 관련하여 중복되는 지령이 발생시 조그운전, 다단 가/감속, DRV-07 의 Freq Ref Src 설정된 주파수 지령 소스 순으로 Time Event 를 수행합니다.

① 주의

Time Event 운전 중 인버터 고장이 발생한 경우 운전 중인 동작은(Time Event 의 설정된 동작) 정지하고 트립 상태를 유지합니다. Time Event 재 운전을 하기 위한 2 가지 방법이 있습니다. 첫번째는 PRT-07 RST Restart 를 설정합니다. PRT-07 RST Restart 가 YES 로 되어 있는 경우 고장이 해제된 경우 자동으로 재기동 합니다.

두번째는 Time Event En 을 리프레쉬 하는 방법이 있습니다. 키패드에서 AP3-70 Time Event En 의 값을 No 에서 다시 YES 로 하는 경우 재기동이 가능합니다. IN-65~71 의 Px Define 에 Time Event En 이 설정되어 있는 경우 해당 단자대를 Off 후 On 하면 재기동 합니다.

5.23 에너지 버퍼링 운전(Kinetic Energy Buffering)

입력 전원에 정전이 발생하면 인버터 DC 링크의 전압(DC Link Voltage)이 낮아져 저전압 트립(Low Voltage Trip)이 발생하며 출력이 차단됩니다. 에너지 버퍼링 운전을 사용하면 정전 시간 동안 모터에서 발생하는 회생 에너지를 이용하여 DC 링크의 전압을 유지합니다. 따라서 순시 정전 후 저전압 트립까지의 시간을 연장할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
	77	에너지 버퍼링 선택	KEB Select	1	Yes	0~1	-
	78	에너지 버퍼링 시작량	KEB Start Lev	130		110~140	%
	79	에너지 버퍼링 정지량	KEB Stop Lev	135		125~145	%
	80	에너지 버퍼링 슬립	KEB Slin Gain	300		1~20000	
CON		게인		500		1~20000	
	81	에너지 버퍼링 P 게인	KEB P Gain	1000		1~20000	-
	82	에너지 버퍼링 I 게인	KEB I Gain	500		1~20000	-
	02	에너지 버퍼링 가속	KEP Aco Timo	10.0	0.75~90kW		Soc
	03	시간	REDACC TIME	30.0	110~500kW	0.0~000.0	Sec

에너지 버퍼링 운전 설정 상세

Г

코드 및 기능	설명					
	입력 전원이 차단되었을 때 에너지 버퍼링 운전을 선택합니다.					
	설정		기능			
CON-77	0	No	저전압 트립(Low Voltage Trip)이 발생할			
KEB Select			때까지 일반 감속 운전합니다.			
	1	Yes	인버터 출력 주파수를 제어해 모터로부터			
			발생하는 회생 에너지를 DC 링크(인버터			
			직류부)로 충전시킵니다.			
CON-78	에너지 버퍼링 운전의 시작 시점과 중지 시점을 설정합니다. 저전압					
KEB Start Lev, CON-79	트립	레벨을 100% 기	준으로 하여 정지 레벨(CON-79)을 시작			
KEB Stop Lev	레벨(CON-78) 보다 높게 설정해야 합니다.					
CON-80 KEB Slip Gain	정전의	으로 인한 에너지	버퍼링 동작 시작 초기에 부하로 인한 저전압			

코드 및 기능	설명
	고장이 발생하는 것을 방지하기 위한 게인 입니다.
	에너지 버퍼링 운전 중 직류 전원부의 전압을 유지시키기 위한 제어기
CON-81 KEB P Gain	P 게인 입니다. 정전 후 바로 저전압 고장이 발생하는 경우에 설정
	값을 변경하여 운전합니다
	에너지 버퍼링 운전 중 직류 전원부의 전압을 유지시키기 위한 제어기
CON-82 KEB I Gain	I 게인 입니다. 에너지 버퍼링 동작 중 주파수가 정지 시까지 운전
	유지할 수 있도록 게인 값을 설정합니다.
CON-83	입력 전원이 회복되어 에너지 버퍼링 운전에서 정상 운전으로 복귀될
KEB Acc Time	때 운전 주파수의 가속 시간을 설정 합니다.

참고

KEB 기능은 부하 상태(용량, 관성등..)에 따라 성능 차가 큽니다. 향상된 KEB 기능 수행을 위해 KEB Gain 을 조절할 수 있습니다.

- 순시 정전 후 저전압 트립이 곧바로 발생하는 경우는 부하 관성이 작거나 혹은 부하량이 큰 경우일 수 있습니다. 이러한 경우 KEB I Gain 을 증가 혹은 KEB Slip Gain 을 증가 시켜 성능을 향상 시킬 수 있습니다.
- 순시 정전 후 KEB 기능 동작 중 진동이 발생하거나 전류 변동이 커지는 경우 KEB P Gain 을 증가 시키거나 KEB I Gain 을 줄이면 성능을 향상 시킬 수 있습니다.

① 주의

순시 정전 시간 및 부하 관성에 따라 에너지 버퍼링 운전 중에도 감속 시 저전압 트립이 발생할 수 있습니다. 가변 토크 부하(팬, 펌프 등의 부하) 이외의 부하에서는 에너지 버퍼링 운전 시 모터가 진동할 수 있습니다.

5.24 전류 헌팅 방지 기능(Anti Hunting Regulator)

V/F 제어시 기계적 공진 등에의해 전류 헌팅(전류 왜곡이나 오실레이션)이 발생하게 되며 이는 부하 시스템에 악영향을 미칠 수 있습니다. 이를 방지하기 위해 사용하는 기능입니다.

그룹	코드	명칭	LCD 표시	설정값		설정값		설정값			설정범위	단위
	10	공진회피 기능		4	Vaa	0	No					
	13	사용 유무	ARK Sei	I	res	1	Yes	-				
	11	공진 회피 P		1000		0.2	0767					
	14	게인		1000		0~32767		-				
	15	공진 회피		0 400.00		0~AHR High		Ц 7				
CON	15	시작 주파수	ARK LOW FIEQ			Freq		ΠZ				
	16	공진 회피				AHR Low		Ц 7				
	10	종료 주파수	ALIKTIGHTIEQ			Freq~400.00		112				
		공진 회피		2								
	17	보상 전압	AHR Limit			0~2	0	%				
		제한율										

전류 헌팅 방지 기능 설정 상세

Г

코드 및 기능	설명	설명						
	전류 "	헌팅 방지 운전을 ·	선택합니다.					
	설정		기능					
CON-13 AHR Sei	0	No	전류 헌팅 기능을 사용하지 않습니다.					
	1	Yes	전류 헌팅 방지 기능을 사용합니다.					
CON-14 AHR P-	AHR	비례 게인은 크게	설정할수록 응답 특성이 빨라 헌팅 방지의					
Gain	특성0	잘 나타날 수 있	으나 너무 크게 설정하면 전류가 불안전 해					
	질 수 있습니다.							
CON-15 AHR Low Freq	전류 현	헌팅 방지 기능이 ·	동작하는 하한 리피트 주파수(CON-15)와					
CON-16 AHR High Freq	상한 i	상한 리미트 주파수(CON-16)를 설정할 수 있습니다.						

5.25 Fire Mode 운전

흡기팬, 배기팬 등에서 화재와 같은 위급한 상황 발생 시 하드웨어 적인 고장 및 심각한 고장을 제외하고 인버터가 연속 운전하게 하여 다른 시스템을 보호하는 역할을 하는 기능입니다.Fire Mode 기능 동작 시에는 설정된 주파수와 설정된 방향으로 연속 운전 합니다.

그룹	코드	명칭	LCD 표시	설정값		설정범위	단위
	44	Fire Mode설정 비밀번호	Fire Mode PW	3473	-		-
	45	Fire Mode 설정	Fire Mode Sel	0: None	0 1 2	None Fire Mode Test Mode	-
PRT	46	방향 설정	Fire Mode Dir	0:Forward	0 1	Forward Reverse	-
	47	속도 설정	Fire Mode Freq	60.00	0~m	ax Freq	Hz
	48	Fire Mode 동작 횟수	Fire Mode Cnt	0	-		-
IN	65~75	Digital input 설정	Px Define	40: Fire Mode	0~5	5	-
OUT	31~35	Digital Output 설정	Relay1~5	27: Fire Mode	0~42	2	-
PRT I	36	TR 출력 설정	Q1 define	27: Fire Mode	0~42	0~42	

Fire Mode 로 설정된 다기능 단자대가 On 이 되면 인버터는 모든 지령을 무시하고 Fire Mode Dir(PRT-46), Fire Mode Freq(PRT-47)에서 정해진 방향과 주파수로 운전합니다. 이때 특정 고장 (ASHT, Over Current 1, Over Voltage, Ground F)을 제외한 고장은 무시하고 연속 운전을 하고, 위의 특정 고장 발생시에는 Reset Retry 기능을 이용하여 연속 운전을 시도합니다.

Fire Mode 기능 설정 상세

코드 및 기능	설명
PRT-44 Fire Mode PW	Fire Mode의 비밀번호는 3473 입니다.
	Fire Mode를 선택하기 위해서 비밀번호를 설정해야 합니다. 비밀번호를
	입력하게 되면 Fire Mode Sel의 상태를 1번 변경가능합니다.

코드 및 기능	설명	설명						
	Fire Mode를 설정합니다.							
	설정		기능					
PRT-45 Fire Mode	0	None	Fire Mode를 사용하지 않습니다.					
Sel	1	Fire Mode	정상 Fire Mode 입니다.					
	2	Test Mode	Fire Mode 테스트를 위한 모드입니다.					
			Fire Mode 운전 중 고장 발생 시 고장 처리를					
			하며, Fire Mode Cnt값이 증가하지 않습니다.					
PRT-46 Fire Mode Dir	Fire M	ode 운전시 운전	! 방향을 설정합니다.					
PRT-47 Fire Mode Freq	Fire M	ode 운전시 운전	! 주파수를 설정합니다.					
	Fire M	ode 운전 횟수를	· 나타냅니다. PRT-45 Fire Mode Sel 의 값이 Fire					
PRT-48 Fire Mode Cnt	Mode	일 경우에만 카윤	은트가 증가됩니다. 카운트 값이 증가하여 99가 되면					
	카운트	는 더 이상 증기	하지 않습니다.					

① 주의

Г

- Fire Mode 운전 시 Damper 혹은 Lubrication 이 설정되어 있을 경우, 인버터는 운전 명령이 들어온 시점 부터 Damper 혹은 Lubrication 에 설정된 운전 지연시간이 끝나고 Fire Mode 운전을 시작합니다.
- Fire Mode 기능의 경우 한번이라도 Fire Mode 가 동작 되었을 시, 그 이후의 제품 사용에 관해서는 제품 보증을 하지 않습니다. 다만 Test Mode 로 운전을 할 경우 고장이 발생 시에는 Reset Retry 기능은 쓰지 않고 고장 처리를 하게 되며, PRT-48 의 Fire ModeCnt 가 증가하지 않습니다.
- Fire Mode 운전 후 Fire Mode 운전을 정지시키면 인버터는 OFF 상태(인버터 정지)입니다.

5.26 에너지 절약 운전

5.26.1 수동 에너지 절약 운전

인버터 출력 전류가 BAS-14(Noload Curr) 코드에서 설정한 전류보다 작은 경우, 출력 전압을 ADV-51(Energy Save) 코드에서 설정한 크기만큼 줄입니다. 에너지 절약 운전이 동작하기 이전 전압이 백분율의 기준 값이 됩니다. 수동 에너지 절약 운전은 가/감속 중 동작하지 않습니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위		단위	
ADV		에너지 절약	E Savo			0	None		
	50		L-Save	1	Manual	1	Manual	-	
		운선	wode			2	Auto		
	51	에너지 절약 크기	Energy Save	30		0~30)	%	

5.26.2 자동 에너지 절약 운전

모터 정격 전류와 출력 전력를 기준으로 ADV-52 에 설정된 시간 동안 최적의 에너지 절약점을 계산하고 그에 따른 출력 전압을 조정합니다. 에너지 절약 운전은 경부하 상태에서 효과가 있으며, 부하량이 모터 정격 전류 대비 80%이상이 될 시에는 동작하지 않습니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
ADV	50	에너지 절약 운전	E-Save Mode	2	Auto	0~2	-

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
	52	에너지 절약점 써치 시간	E-Save Det T	20.0(Sec)	0.0~100.0	Sec

① 주의

Г

에너지 절약 운전 중 운전 주파수가 바뀌거나 정지 명령 등에 의해 가/감속하는 경우, 에너지 절약 운전에서 정상 운전으로 복귀에 필요한 제어 시간 때문에 실제 가/감속 시간이 설정된 가/감속 시간보다 길어질 수 있으니 주의하십시오.

5.27 속도 써치(Speed Search) 운전

인버터 출력 전압이 차단된 상태에서 모터가 공회전하고 있을 때 인버터에서 전압을 출력하는 경우 트립을 방지하기 위해 사용합니다. 속도 써치 운전은 인버터 출력 전류를 기준으로 대략적인 모터 회전 속도를 계산하는 것으로, 정확한 속도를 검출하는 것은 아닙니다.

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
70	70	속도 써치 모드 선택	SS Mode	0 Flying Start-1		-	-
	71	속도 써치 운전 선택	Speed Search	0000		-	bit
	70	속도 써치 기준	SS Sup-	90	0.75~90kW	50 100	0/
CON	12	전류	Current	80	110~500kW	50~120	70
CON	73	속도 써치 비례 게인	SS P-Gain	100		0~9999	-
7	74	속도 써치 적분 게인	SS I-Gain	200		0~9999	-
	75	속도 써치 전 출력 차단 시간	SS Block Time	1.0		0~60	sec

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
OUT	31	다기능 릴레이 1 항목	Relay 1	19	Speed Search	-	-
	33	다기능 출력 1 항목	Q1 Define				

٦

속도 써치 운전 설정 상세

코드 및 기능	설명					
	속도 써치의 종류를 선택합니다.					
CON-70 SS Mode	설정		기능			
	0 Flying Start- 1		공회전 시의 인버터 출력 전류를 CON- 72(SS Sup-Current) 설정 값 이하로 제어하면서 속도 써치를 수행합니다. 모터의 공회전 방향과 재기동 시의 운전 지령 방향이 동일하면, 약 10Hz 이하의 저속 영역에서도 안정적인 속도 써치 기능을 수행할 수 있습니다. 하지만 모터의 공회전 방향과 재기동 시 운전 지령의 방향이 반대인 경우에는, 공회전 방향을 알 수 없기 때문에 속도 써치 시 충분한 성능을 발휘하지 못합니다.			
	1	Flying Start- 2	모터 공회전 중 역기전력에 의해 발생되는 리플 전류를 인버터 내부에서 PI 제어하며 속도 써치를 수행합니다. 이 방법을 사용하면 모터의 공회전 방향(정/역) 정보를 정확하게 알 수 있으므로, 모터의 공회전 방향이나 운전 지령 방향과 관계 없이 안정적인 속도 써치를 수행할 수 있습니다. 하지만 이 방식은 공회전 중 역기전력(역기전력은 공회전 속도에			

코드 및 기능	설명						
			비례 ⁱ 사용 ⁱ 10~1 속도 찾아! 경우;	함)에 의혀 하므로, 지 5Hz 이하 써치 시여 내지 못하 가 있습니	개 발생도 허속(모터)으로 공 에는 공호 이 속으 다.	l는 리플 전류를 마다 다름, 대체로 3회전 중인 모터의 의전 주파수를 정확히 로부터 재가속하는	
	속도 써치는 다음과 같이 네 종류 중 선택하여 사용할 수 있습니다. 스위치의 점(Dot) 표시가 위에 있으면 해당 비트가 설정(On)된 것이며, 아래에 있으면 설정이 해제(Off)된 것입니다.						
	앙복 LCD 로	년		(On)			
	속도 써치 설정 종류와 기능						
	실성 비트 4	비트3	비트 2	//등 비트2 비트1			
	1		1-2	<u>1</u> ✓	일반 7	· 수하는 경우	
CON-71 Speed Search			~		LV Trip 을 제외한 트립 발생 후 초기화 기동하는 경우		
		~			순시 정전 후 재기동하는 경우		
	✓				전원 투입과 동시에 기동하는 경우		
	일반 가속하는 경우: 비트 1 을 1 로 설정한 경우, 인버터 운전 지령이 입력되면 속도 써치 운전으로 가속합니다. 모터가 부하 측 환경에 의해 회전하고 있을 때 인버터에 운전 지령이 입력되어 전압이 출력되면 트립이 발생할 수 있습니다. 이런 경우에 속도 써치 기능을 사용하면 트립 없이 가속할 수 있습니다.						

Γ

코드 및 기능	설명			
	LV Trip 을 제외한 트립 발생 후 초기화 기동: 비트2를 1로 설정하고, PRT-08(RST Restart) 코드의 BIT 0 을 1 로 설정하면, 트립 발생 후 단자대 초기화(Reset)가 입력되면 속도 써치 동작으로 트립 발생 전의 운전 주파수까지 가속합니다. 순시 정전 후 재기동: 비트 3 을 1 로 설정한 경우, 인버터 입력 전원이 오프(Off)되고 저전압 트립이 발생한 후 인버터 내부 전원이 오프(Off)되기 전에 전원이 복구되면 속도 써치 동작으로 저전압 트립 발생 이전의 운전 주파수까지 가속합니다. PRT-08(RST Restart)의 BIT1 이 1 인 경우에만 기능이 유효 합니다.			
	순시 정전이 발생하여 입력 전원이 차단되면 인버터는 저전압 트립을 발생시켜 출력을 차단합니다. 입력 전원이 다시 복구되면 저전압 트립이 발생하기 전의 운전 주파수를 출력하고 전압은 인버터 내부 PI 제어에 의해 증가하게 됩니다.			
	전류가 CON-72 코드에서 설정한 크기 이상으로 증가하면, 전압은 증가를 멈추고 주파수는 감소합니다(t1 구간). 전류가 CON-72 코드에서 설정한 크기 이하로 내려가면, 전압은 다시 증가하고 주파수는 감속을 멈춥니다(t2 구간). 정상 주파수와 전압 상태가 되면 트립이 발생하기 전 운전 주파수로 정상 가속합니다.			

٦

Г

참고

H100 시리즈 인버터는 정격 출력 내에서 사용하는 경우 8ms 이내의 순시 정전이 발생하더라도 정상 운전하도록 설계되어 있습니다. 인버터 내부의 직류 전압은 출력 부하량에 따라 변동할 수 있습니다. 따라서 순시 정전 시간이 8ms 이상이거나 출력이 정격 이상의 경우에는 저전압 트립이 발생할 수 있습니다.

① 주의

프리 런 중 재 운전하는 경우, 원활하게 운전하려면 반드시 가속 시 속도 써치 기능(일반 가속하는 경우)을 설정해야 합니다. 가속 시 속도 써치 기능(일반 가속하는 경우)을 설정하지 않으면 과전류 트립이나 과부하 트립이 발생할 수 있습니다.

5.28 자동 재기동 설정

인버터에 이상이 발생하여 운전이 정지했을 때, 트립이 해제되면 설정 값에 따라 자동으로 인버터를 재기동하도록 할 때 사용합니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
PRT	08	트립 리셋 시 기동 선택	RST Restart	11	-	-
	09	자동 재기동 횟수	Retry Number	6	0~10	-
	10	자동 재기동 지연 시간	Retry Delay	1.0	0.1~60.0	sec
CON	71	속도 써치 운전 선택	Speed Search	-	0000~1111	bit
	72	속도 써치 기준 전류	SS Sup- Current	90	70~120	%
	73	속도 써치 비례 게인	SS P-Gain	100	0~9999	
	74	속도 써치 적분 게인	SS I-Gain	200	0~9999	
	75	속도 써치 전 출력 차단 시간	SS Block Time	1.0	0.0~60.0	sec

자동 재기동 기능 설정 상세

Γ

코드 및 기능	설명				
	Reset Restart 기능 있습니다. 스위치 설정(On)된 것이미 항목 LCD 로더		은 다음과 같이 두 종류 점(Dot) 표시가 위에 9 , 아래에 있으면 설정이 비트 온(On)	중 선택하여 사용할 수 있으면 해당 비트가 해제(Off)된 것입니다. 비트 오프(Off)	
PRT-08 RST Restart,	Reset Res	tart 기능	기능		
	비트 1 	비트 0 ✓	LV Trip 를 제외한 트립 발생 시		
	 LV 를 제외한 트립 발생 시: 비트 0 를 On 한 경우, Trip 발생 후 해제가 되면 인버터는 재기동 합니다. LV Trip 발생 시: 비트 1 을 On 한 경우, LV Trip 이 발생 후 해제가 되면 인버터는 재기동 합니다. 				
PRT-09 Retry Number, PRT-10 Retry Delay	자동 재기동 가능 횟수는 PRT-09 코드에서 설정합니다. 운전 중 트립이 발생하면 PRT-10(Retry Delay)에서 설정한 시간이 경과한 후에 인버터가 자동 재기동합니다. 자동 재기동을 할 때마다 인버터 내부에서 재기동 시도 횟수가 1 씩 감소하게 되며, 설정된 횟수만큼 트립이 발생하여 남은 횟수가 0 이 되면 더 이상 자동으로 재기동을 시도하지 않습니다. 자동 재기동 후 60 초 이내에 트립이 다시 발생하지 않는 경우 인버터 내부에서 감소시켰던 자동 재기동 횟수를 다시 증가시킵니다. 최대 증가 횟수는 설정된 재기동 횟수로 제한됩니다.				
코드 및 기능	설명				
---------	---				
	인버터 과전류 2(Over Current2), 하드웨어 이상(HW Diag)으로 인한				
	정지 시에는 인버터를 자동 재기동하지 않습니다. 자동 재기동 시				
	가속 동작은 속도 써치 운전 시와 동일합니다. 따라서 부하에 따라				
	CON-72~75 코드 기능을 설정할 수 있습니다. 속도 써치 기능에				
	대한 자세한 사항은 227 페이지, 5.27 속도 써치(Speed Search)				
	운전 을 참조하십시오.				

[자동 재기동 횟수를 2로 설정한 경우]

① 주의

- 자동 재기동 횟수를 설정한 경우, 트립이 해제되면 자동으로 재기동하여 모터를 회전시키므로 주의하십시오.
- HAND 모드에서 자동 재기동이 설정되어 있는 경우 트립이 발생하면 트립만 해제되고 리트라이는 하지 않습니다.(HAND 모드 동작 기본)
- 자동 재기동이 설정되어 있는 AUTO 모드에서 단자대 운전 중 트립이 발생하면 자동 재기동 운전을 실시합니다.

- 자동 재기동이 설정되어 있지 않은 AUTO 모드에서 단자대 운전 중 트립이 발생하고 OFF 키를 이용하여 트립을 리셋하게 되면 OFF 스테이트에 유지되며 AUTO 키를 눌러도 정상 운전하지 않습니다. 이는 트립 해제시 단자대 정보를 초기화 하기 때문이며 재운전을 원할시 운전지령을 다시 인가해야합니다.
- 자동 재기동이 설정되어 있지 않은 AUTO 모드에서 단자대 운전 중 트립이 발생하고 단자대 Reset을 이용하여 트립을 리셋하게 되면 AUTO 모드 정지 상태를 유지하며 재 운전은 하지 않습니다. 이는 트립 해제시 단자대 정보를 초기화 하기 때문이며 재운전을 원할시 운전지령을 다시 인가해야합니다.
- AUTO 모드에서 자동 재기동이 설정되어 있으며 디지털 운전 지령에 의해 운전 중 트립이 발생하고 트립 해제 조건이 되면 자동 재기동을 함.

5.29 운전음 설정(캐리어 주파수 설정 변경)

그룹	코드	명칭	LCD 표시	설정 겁	ζt	설정 범위	단위	
CON	04	04 캐리어 주파수	Carrier Freq		0.75~30kW	1.0 ~ 15.0		
				3.0	37~55kW	1.0 ~ 10.0		
					75/90kW	1.0 ~ 7.0	kHz	
				2.0	110~355kW	1.0~5.0		
				1.5	400/500kW	1.0~4.0		
	05	스위칭 모드	PWM* Mode	0	Normal PWM	0~1	-	

* PWM (Pulse width modulation): 펄스 폭 변조

운전음 선택 설정 상세

Г

코드 및 기능	설명
	캐리어 주파수 설정을 변경하여 모터 운전음을 선택합니다. 인버터
	내부의 파워 소자(IGBT)는 고주파 스위칭 전압을 발생시켜 모터에
CON-04 Carrier Fred	공급합니다. 이 때의 스위칭 속도를 캐리어 주파수라고 합니다. 캐리어
Callor 10q	주파수가 높게 설정되면 모터에서 발생하는 운전음이 작아지며,
	캐리어 주파수를 낮게 설정하면 모터 운전음이 커집니다.
CON-05 PWM	부하율에 따라 인버터에서 발생하는 열 손실 및 누설 전류를 감소시킬
Mode	수 있습니다. 1(LowLeakage PWM)을 선택하면 0(Normal PWM)인

코드 및 기능	설명						
	경우에 비해 열 손실 및 누설 전류 크기가 줄어들지만, 모터에서						
	발생하는 소음은 증가합니다. Lowleakage PWM 은 2 상 PWM 변조						
	방식을 사용하므로, 성능 저하를 최소화하면서 1/3 가량의 스위칭						
	손실을 줄일 수 있습니다.						
	항목	캐리어 주파수					
		1.0kHz	15kHz				
		LowLeakage PWM	Normal PWM				
	모터 소음	1	Ļ				
	열 발생	↓	Ť				
	노이즈 발생	↓	↑				
	누설 전류	Ļ	Ť				

참고

캐리어 주파수

• 공장 출하 시 캐리어 주파수는 용량에 따라 초기값이 설정되어 있습니다. (0.75~90kW: 3kHz, 110~355kW: 2kHz, 400/500kW: 1.5kHz)

H100 시리즈 인버터 디레이팅(Derating) 규격

- 과부하율은 정격을 초과하는 부하량의 허용치이며, 정격 부하량 대비 초과 비율입니다.
 H100 인버터의 과부하율은 120%/1 분입니다. 사용 부하율에 따라 전류 정격이 다르며, 주위 온도에 따라서도 전류 정격에 제한이 있으므로 주의하십시오. 디레이팅 규격에 대한 자세한 사항은 545 페이지,
- •
- 인버터 연속 정격 전류 디레이팅을 참조하십시오.
- 다음은 주위 온도에 대한 정격 전류 제한 값입니다.

5.30 제 2 모터 운전

Г

제 2 모터 운전 기능은 한 대의 인버터로 2 대의 모터를 전환 운전할 때 사용합니다. 제 2 모터 운전 기능에서는 두 번째 모터를 위한 파라미터를 설정하며, 제 2 기능으로 정의된 다기능 단자가 입력(On)되면 제 2 모터를 운전할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 깂	t	설정 범위	단위
IN	65~ 71	Px 단자 기능 설정	Px Define(Px: P1~P7)	28	2nd Motor	0~55	-

제 2 모터 운전 설정 상세

코드 및 기능	설명					
	다기능 입력 단자를 26(2nd Motor)으로 설정하면 M2(제 2 모터 그룹)					
	그룹이 표시됩니다. 제 2 모터(2nd Motor)로 설정된 다기능 단자에					
	신호가 입력되면 아래 코드의 설정에 따라 동작하게 됩니다. 단,					
	인버터가 운전 중일 때에는 다기능 단자에 신호가 입력되어도 제 2					
IN-65~71 Px 모터 파라미터로 동작하지 않습니다.						
Define						
	M2-28(M2-Stall Lev) 설정을 사용하려면, 반드시 PRT-50(Stall Prevent)					
	코드를 원하는 값으로 설정해야 합니다. M2-29(M2-ETH 1min), M2-					
	30(M2-ETH Cont) 설정을 사용하려면, 반드시 PRT-40(ETH Trip Sel)					
	코드를 원하는 값으로 설정해야 합니다.					

제 2 모터로 설정된 다기능 단자 입력 시 설정

코드 및 기능	설명	코드 및 기능	설명
M2-04 Acc Time	가속 시간	M2-15 M2-Efficiency	모터 효율
M2-05 M2-Dec Time	감속 시간	M2-17 M2-Rs	고정자 저항
M2-06 M2- Capacity	모터 용량	M2-18 M2-Lsigma	누설 인덕턴스
M2-07 M2-Base Freq	모터 기저 주파수	M2-25 M2-V/F Patt	V/F 패턴
M2-08 M2-Ctrl Mode	제어 모드	M2-26 M2-Fwd Boost	정방향 토크 부스트
M2-10 M2-Pole Num	극수	M2-27 M2-Rev Boost	역방향 토크 부스트
M2-11 M2-Rate Slip	정격 슬립	M2-28 M2-Stall Lev	스톨 방지 레벨
M2-12 M2-Rated	정격 전류	M2-29 M2-ETH	모터 과열 방지 1분
Cuil			정격
M2-13 M2-Noload	무부하 전류	M2-30 M2-ETH Cont	모터 과열 방지 연속
Cuii			정격
M2-14 M2-Rated Volt	모터 정격 전압		

제 2 모터 운전 사용 예

Г

제 2 모터 운전 기능을 활용하여 P3 단자로 기존 7.5kW 모터로부터 3.7kW 제 2 모터로 전환 운전을 하려는 경우 다음과 같이 설정하십시오.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
IN	67	P3 단자 기능 설정	P3 Define	26	2nd Motor	-	-
MO	06	모터 용량	M2-Capacity	-	3.7kW	-	-
IVIZ	08	제어 모드	M2-Ctrl Mode	0	V/F	-	-

5.31 상용 전원 전환 운전

인버터로 운전되는 모터를 상용 전원으로 전환하여 운전하거나, 그 반대의 시퀀스로 전원을 전환할 때 사용합니다.

그룹	코드	명칭	LCD 표시	설정	· 값	설정 범위	단위
IN	65~71	Px 단자 기능 설정	Px Define(Px: P1~P7)	18	Exchange	0~55	-
OUT	31	다기능 릴레이 1 항목	Relay1	17	Inverter Line	0~42	-
	33	다기능 출력 1 항목	Q1 Define	18	Comm Line	0~42	-

상용 전원 전환 운전 설정 상세

코드 및 기능	설명				
	모터의 입력 전원을 인버터 출력으로부터 상용 전원으로 전환할 때, 사용할 단자를 선택한 후 코드 값을 18(Exchange)으로 설정하십시오. 해당				
IN-65~71 Px Define	단자가 온(On)되면 전원이 전환됩니다. 다시 상용 전원으로부터 인버터 출력 단자로 모터 입력 전원을 전환할 때에는 설정 단자를				
	오프(Off)시키십시오.				
	다기능 릴레이나 다기능 출력을 17 번 인버터 라인(Inverter Line)과 18 번 상용 전원 라인(Comm Line)으로 설정합니다. 릴레이 동작 시퀀스는 다음 그림을 참조하십시오.				
	속도 검색 운전 구간				
	운전 주파수				
OUT-31 Relay 1~ OUT-36 Q1 Define	운전 지령				
	Px(Exchange)				
	Relay1 (Inverter Line)				
	Q1(Comm Line)				
	500ms 500ms				

٦

5.32 냉각 팬 제어

인버터 본체의 방열판(Heat-sink) 냉각 팬을 온(On)/오프(Off) 제어합니다. 운전 및 정지가 빈번한 부하이거나 정지 시 냉각 팬 소음이 없는 조용한 환경이 필요한 경우에 사용합니다. 냉각 팬 제어 기능을 적절히 설정하면 냉각 팬의 수명을 연장할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
ADV	64	냉각 팬 제어	Fan Control	0	During Run	0~2	-

냉각 팬 제어 상세 설정

Г

용도	기능		
	설정	0.77	기능
	0	During Run	인버터에 전원이 공급된 상태에서 운전 지령이
			입력되면 냉각 팬이 동작합니다. 운전 지령이
			오프(Off)되고 인버터 출력이 차단되면 냉각 팬이
			정지합니다. 인버터 방열판의 온도가 일정 수준
ADV-64 Fan			이상일 경우에는 운전 지령에 관계없이 냉각 팬이
Control			동작합니다.
	1	Always On	인버터에 전원이 공급되면 냉각 팬이 항상
			동작합니다.
	2	Temp	인버터에 전원이 공급되고, 운전 지령이 입력되어도
		Control	인버터 방열판의 온도가 일정 수준 이상으로
			상승하기 전에는 냉각 팬이 동작하지 않습니다.

참고

ADV-64 코드를 0(During Run)으로 설정하더라도 전류 입력 고조파나 노이즈에 의해 방열판 온도가 일정 온도 이상 올라가면 보호 기능이 동작하여 냉각 팬이 동작할 수 있습니다.

110kW 이상의 용량에는 내부 온도를 식히기 위해 작은 내장 팬이 설치되어 있습니다. 내부 팬은 인버터 주 제어 팬의 작동 명령과 함께 켜기 / 끄기를 제어합니다.

5.33 입력 전원 주파수 및 전압 설정

인버터 입력 전원의 주파수를 선택합니다. 60Hz 에서 50Hz 로 변경하면 60Hz 이상으로 설정된 주파수(또는 Rpm) 관련 항목(최대 주파수, 기저 주파수 등)은 모두 50Hz 로 변경됩니다. 50Hz 로 설정된 상태에서 60Hz 로 설정을 변경하는 경우, 50Hz 로 설정된 기능 항목은 모두 60Hz 로 변경됩니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
BAS	10	입력 전원 주파수	60/50 Hz Sel	0	60Hz	0~1	-

인버터 입력 전원 전압을 설정합니다. 설정된 전압을 기준으로 저전압 트립 레벨이 자동으로 변경됩니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범우	ł	단위
BAS 1			AC Input Volt	200 Type	220	170~240		
	19	입력 전원 전압		400 Time	200	320-480	0.75~90kW	V
				400 Type	380	320-550	110~500kW	

5.34 파라미터 읽기, 쓰기 및 저장

파라미터 읽기, 쓰기 및 저장 기능을 이용하면 인버터 본체에 저장되어 있는 파라미터를 키패드로 복사하고, 키패드에 저장된 파라미터를 인버터 본체로 복사할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
CNF	46	파라미터 읽기	Parameter Read	1	Yes	-	-
	47	파라미터 쓰기	Parameter Write	1	Yes	-	-
	48	파라미터 저장	Parameter Save	1	Yes	-	-

파라미터 읽기, 쓰기 및 저장 설정 상세

코드 및 기능	설명
CNF-46 Parameter	인버터 본체에 있는 파라미터를 키패드로 복사합니다. 키패드에
Read	저장되어 있는 기존 파라미터는 모두 삭제됩니다.
CNF-47 Parameter	키패드에 저장된 파라미터를 인버터 본체로 복사합니다. 인버터
Write	본체의 기존 파라미터는 모두 삭제됩니다. 파라미터 쓰기 중에

코드 및 기능	설명
	에러가 발생하는 경우, 기존에 저장된 데이터를 그대로 사용할 수
	있습니다. 키패드에 저장된 데이터가 없는 경우에는 'EEP Rom
	Empty' 라는 메시지가 표시됩니다.
	통신으로 설정된 파라미터는 RAM 영역에 저장되기 때문에 인버터
CNF-48 Parameter	전원을 껐다 켜면 모두 사라집니다. 통신으로 파라미터를 설정하는
Save	경우, CNF-48 코드에서 1(Yes)을 선택하면 전원을 껐다가 켜도
	통신으로 설정된 파라미터는 그대로 남아 있습니다.

5.35 파라미터 초기화

Г

사용자가 변경한 파라미터를 공장 출하 값으로 초기화할 수 있습니다. 모든 그룹의 데이터를 초기화하거나 각 그룹별로 선택하여 데이터를 초기화할 수 있습니다. 단, 트립이 발생한 상태이거나 인버터가 운전 중인 경우에는 파라미터를 초기화할 수 없습니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
CNF	40	파라미터 초기화	Parameter Init	0	No	0~15	

파라미터 초기화 설정 상세

코드 및 기능	설명				
	설정	5	LCD 표시	기능	
	0	No	No	-	
				모든 데이터를 초기화합니다.	
	1	모든 그룹 초기화		1(All Grp)을 선택하고	
Init			All Grp	[PROG/ENT] 키를 누르면	
				초기화를 시작하고, 초기화가	
				완료되면 0(No)이 표시됩니다.	
		DRV 그룹		그룹별로 데이터를	
	2	초기화	DKV Grp	초기화합니다. 초기화하려는	

코드 및 기능	설명			
	3	BAS 그룹 초기화	BAS Grp	그룹을 선택한 후 [PROG/ENT]
	4	ADV 그룹 초기화	ADV Grp	키를 누르면 초기화를
	5	CON 그룹 초기화	CON Grp	시작하고, 초기화가 완료되면 0(No)이 표시됩니다.
	6	IN 그룹 초기화	IN Grp	
	7	OUT 그룹 초기화	OUT Grp	
	8	COM 그룹 초기화	COM Grp	
	9	PID 그룹 초기화	PID Grp	
	10	EPI 그룹 초기화	EPI Grp	
	11	AP1 그룹 초기화	AP1 Grp	
	12	AP2 그룹 초기화	AP2 Grp	
	13	AP3 그룹 초기화	AP3 Grp	
	14	PRT 그룹 초기화	PRT Grp	
	15	M2 그룹 초기화	M2 Grp	

5.36 파라미터 모드 숨김

사용자가 등록한 암호를 이용해 파라미터 모드가 나타나지 않도록 설정할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
CNF	50	파라미터 모드 숨김	View Lock Set	Un-locked	0~9999	
	51	파라미터 모드 숨김 암호	View Lock Pw	Password	0~9999	

파라미터 모드 숨김 설정 상세

Г

코드 및 기능	설명	
	파라미	터 모드 숨김에 사용할 암호를 등록합니다. 다음 순서에 따라
	암호를	등록하십시오.
	스너	저비
	군시	걸자
	1	CNF-51 코드에서 [PROG/ENT] 키를 누르면 이전 암호
		입력 창이 보입니다. 공장 출하 값은 0 입니다. 처음 암호를
CNF-51 View Lock		등록하려는 경우에는 0을 입력하십시오.
PW	2	이전 암호가 있는 경우에는 이전 암호를 입력하십시오.
	3	입력한 암호가 이전 암호와 일치하면 새 암호를 등록할 수
		있는 표시 창이 나타납니다(입력한 암호가 이전 암호와
		일치하지 않으면 이전 암호 입력 창이 계속 표시됩니다).
	4	새 암호를 등록하십시오.
	5	등록이 완료되면 CNF-51 코드가 다시 표시됩니다.
	모드 쉳	금김 기능이 해제된 상태에서 사용자가 등록한 암호를
	입력하	면 화면에 잠김(Locked) 표시가 나타나며, 파라미터 변경을
CNF-50 View Lock Set	위한 피	나라미터 모드가 화면에 표시되지 않습니다. 다시 암호를
	입력하	면 잠김(Locked) 표시가 사라지고 파라미터 모드 숨김 기능이
	해제됩	니다.

5.37 파라미터 변경 금지

사용자가 등록한 암호를 이용해 파라미터 변경을 금지할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값	설정범위	단위
CNF 5	52	파라미터 변경 잠금	Key Lock Set	Un-locked	0~9999	-
	53	파라미터 변경 잠금 암호	Key Lock PW	Password	0~9999	-

파라미터 변경 금지 설정 상세

코드 및 기능	설명					
	파라미	파라미터 변경 금지에 사용할 암호를 등록합니다. 다음 순서에 따라				
	암호를	등록하십시오.				
	순서	절차				
	1	CNF-53 코드에서 [PROG/ENT] 키를 누르면 이전 암호 입력				
		창이 보입니다. 공장 출하 값은 0 입니다. 처음 암호를				
CNF-53 Key Lock Pw		등록하려는 경우에는 0을 입력하십시오.				
	2	이전 암호가 있는 경우에는 이전 암호를 입력하십시오.				
	3	입력한 암호가 이전 암호와 일치하면 새 암호를 등록할 수				
		있는 표시 창이 나타납니다(입력한 암호가 이전 암호와				
		일치하지 않으면 이전 암호 입력 창이 계속 표시됩니다).				
	4	새로운 암호를 등록하십시오.				
	5	등록이 완료되면 CNF-53 코드가 다시 표시됩니다.				
	변경 귿	지 기능이 해제된 상태에서 등록한 암호를 입력하면 잠김(Locked)				
CNF-52 Key Lock	표시가 나타나며, 파라미터 변경을 위해 변경하고자 하는 기능 코드에서					
Set	[PROG	/ENT] 키를 눌러도 편집 모드로 변경되지 않습니다. 다시 암호를				
	입력하	면 잠김(Locked) 표시가 사라지고, 변경 금지 기능이 해제됩니다.				

① 주의

파라미터 모드 숨김 및 파라미터 변경 금지 기능이 동작하면 인버터 운전 관련 기능을 변경할 수 없습니다. 따라서 암호를 등록한 경우, 등록한 암호를 반드시 기억해 두십시오.

5.38 변경된 파라미터 표시

공장 출하 값과 다른 파라미터만을 표시합니다. 수정된 파라미터를 추적할 때 사용합니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
CNF	41	변경된 파라미터 표시	Changed Para	0	View All	-	-

변경된 파라미터 표시 설정 상세

Г

코드 및 기능	설명	설명				
	설정		기능			
CNF-41 Changed Para	0	View All	모든 파라미터 표시			
onangoa raia	1	View Changed	변경된 파라미터만 표시			

5.39 사용자 그룹 추가

파라미터 모드의 각 그룹에 있는 데이터 가운데 사용자가 선택한 파라미터만을 별도의 그룹에 모아서 데이터를 변경할 수 있습니다. 사용자 그룹에는 최대 64개의 파라미터를 등록할 수 있습니다.

그룹	코드	명칭	LCD 표시	설	정 값	설정범위	단위
	42	다기능 키 항목	Multi Key Sel	3	UserGrp SelKey	-	-
CNF	45	사용자 등록 코드 전체 삭제	UserGrp AllDel	0	No	-	-

사용자 그룹 추가 설정 상세

코드 및 기능	설명					
	다기능 🗦	_ 다기능 키 항목 중 3(UserGrp SelKey)을 선택하십시오. 이 코드를				
	3(UserGi	p SelKey)으로 설정해도 사용자 그룹 파라미터를 등록하지				
	않으면 /	않으면 사용자 그룹(USR Grp)이 나타나지 않습니다.				
	다음 절차에 따라 파라미터를 사용자 그룹에 등록하십시오.					
CNF-42 Multi Key Sel	순서	절차				
	1	CNF-42 코드를 3(UserGrp SelKey)으로 설정하십시오.				
		LCD 로더 화면 위쪽에 🛛 아이콘이 표시됩니다.				
	2	파라미터 모드(PAR Mode)에서 등록하려는 파라미터로				
		이동한 후 [MULTI] 키를 누르십시오. 예를 들어, DRV				

코드 및 기능	설명	
		그룹 1 번 코드인 목표 주파수(Cmd Frequency)에서 [MULTI] 키를 누르면 아래와 같은 화면이 표시됩니다. USR→REG U STP 60.0Hz DRV01 Cmd Frequency 40 CODE 5 DRV06 Step Freq-1 5 DRV06 Step Freq-1
		 등록할 파라미터의 그룹과 코드 번호 등록할 파라미터의 이름 사용자 그룹에 등록할 코드 번호(40 번 코드)에서 [PROG/ENT] 키를 누르면 DRV-01 코드가 사용자 그룹 40 번 코드로 등록됩니다. 사용자 그룹 40 번 코드에 이미 등록되어 있는 파라미터 정보 사용자 그룹 코드의 설정 범위(0 번은 설정 취소)
	3	3 사용자 그룹에 등록할 코드 번호를 설정합니다. 원하는 코드 번호를 선택한 후 [PROG/ENT] 키를 누르면 등록됩니다.
	4	3 번 값이 바뀌면 4 번에 표시되는 값도 함께 바뀝니다. 4 번은 이미 등록되어 있는 파라미터의 정보를 보여주며, 아직 코드가 등록되어 있지 않으면 'Empty Code' 라고 표시됩니다.0 번은 설정 취소입니다.
	5	이렇게 등록된 파라미터들은 U&M 모드의 사용자 그룹에 등록됩니다. 필요 시에는 파라미터를 중복해서 등록할 수 있습니다. 예를 들어, 1 개의 파라미터를 사용자 그룹 2 번 코드, 11 번 코드 등에 여러 번 등록할 수 있습니다.

코드 및 기능	설명		
	다음 절치	아에 따라 사용자 그룹의 파라미터를 삭제하십시오.	
	순서	절차	
	1	CNF-42 코드를 3(UserGrp SelKey)으로 설정하십시오.	
		LCD 로더 화면 위쪽에 🛛 아이콘이 표시됩니다.	
	2	U&M 모드의 USR Group 에서 삭제하려는 코드로 커서를	
		이동합니다.	
	3	[MULTI] 키를 누르십시오.	
	4	삭제 여부를 묻는 화면이 표시되면 YES를 선택하고	
		[PROG/ENT] 키를 누르십시오.	
	5	삭제가 완료되었습니다.	
CNF-25 UserGrp	1(Yes)로	설정하면 사용자 그룹에 등록된 파라미터를 모두	
AllDel	삭제합니	다.	

Γ

5.40 파라미터 간편 시작(Easy Start On)

파라미터 간편 시작 기능을 사용하면 모터를 운전할 때 필요한 기본 파라미터를 쉽게 설정할 수 있습니다. CNF-61 코드(Easy Start On)에서 1(Yes)를 선택한 후, CNF-40 코드(Parameter Init)에서 1(All Grp)을 선택하여 모든 파라미터를 초기화 후 인버터의 전원을 껐다 켜십시오.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
CNF	61	파라미터 간편 시작 설정	Easy Start On	1	Yes	-	-

파라미터 간편 시작 설정 상세

코드 및 기능	설명	
	다음 질	설차에 따라 파라미터 간편 시작 기능을 설정하십시오.
	순서	절차
	1	CNF-61 코드(Easy Start On)를 1(Yes)로 설정합니다.
	2	CNF-40 코드(Parameter Init)에서 1(All Grp)을 선택해서 인버터의 모든 파라미터를 초기화합니다.
CNF-61 Easy Start On	3	인버터의 전원을 껐다가 처음으로 다시 켜면 파라미터 간편 시작 기능이 시작됩니다. LCD 로더에 다음과 같은 순서로 화면이 나타나면, 적절한 값을 설정하십시오. 각 단계에서 LCD 로더의 [ESC] 키를 누르면 파라미터 간편 시작 기능에서 빠져나올 수 있습니다. • Start Easy Set: Yes 를 선택합니다. • CNF-99 Macro: 매크로 기능을 설정합니다. • BAS-10 60/50Hz Sel: 모터의 정격 주파수를 설정합니다 • DRV-14 Motor Capacity: 모터의 용량을 설정합니다. • BAS-13 Rated Curr: 모터의 정격 전류를 설정합니다 • BAS-15 Rated Volt : 모터의 정격 전압을 설정합니다
		• BAS-11 Pole Number: 모터의 극수를 설정합니다.

코드 및 기능	설명	
	•	BAS-19 AC Input Volt: 입력 전압을 설정합니다. PRT-08 Reset Restart: : 트립 리셋 시 재기동 운전 전압을 설정합니다. PRT-09 Retry Number: 트립 리셋 시 재기동 운전 회수를 설정합니다. COM-96: PowerOn Resume: 직렬 통신 재기동 기능을 설정합니다. CON-71 SpeedSearch: 속도 써치 기능을 설정합니다. DRV-06 Cmd Source: 운전 지령 방법을 설정합니다. DRV-07 Freq Ref Src: 주파수 지령 방법을 설정합니다.
	설 모 순	정이 모두 끝나면 모니터 화면으로 빠져 나옵니다. 터를 운전할 수 있는 최소한의 파라미터가 정되었으므로,AUTO 모드에서 DRV-06 코드에서 설정한 전 지령 방법으로 모터를 운전할 수 있습니다.

① 주의

Г

Easy Start On 의 설정 항목 중 PRT-08 Reset Restart, COM-96 PowerOn Resume, CON-71 SpeedSearch 와 같은 경우 전원 인가 후 곧바로 인버터 기동이 될 수 있으니 설정에 유의 하십시오.

5.41 컨피그(CNF) 모드 파라미터 설정

다음은 컨피그 모드 파라미터로, LCD 로더 관련 부가 기능을 설정하여 사용할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
	2	LCD 명암 조절	LCD Contrast	-	-	
	10	인버터 S/W 버전	Inv S/W Ver	x.xx	-	
CNF*	11	키패드 S/W 버전	Keypad S/W Ver	x.xx	-	-
	12	키패드 타이틀 버전	KPD Title Ver	x.xx	-	-
	30~32	옵션 슬롯 종류	Option-x Type	None	-	-
	44	트립 이력 삭제	Erase All Trip	No	-	-
	60	추가 타이틀 업데이트	Add Title Up	No	-	-
	62	누적 전력량 초기화	WH Count Reset	No	-	-

컨피그 모드 파라미터 설정 상세

코드 및 기능	설명
CNF-2 LCD Contrast	LCD 로더의 LCD 밝기를 조정합니다.
CNF-10 Inv S/W Ver, CNF-11 Keypad S/W Ver	인버터 본체와 LCD 로더의 OS 버전을 확인합니다.
CNF-12 KPD Title Ver	LCD 로더의 타이틀 버전을 확인합니다.
CNF-30~32 Option-x	옵션 슬롯에 장착된 옵션 보드의 종류를 확인합니다. 본 제품은
Туре	CNF-30 Option-1 Type 만 유효하며 CNF-31/32 는 사용하지 않습니다.
CNF-44 Erase All Trip	저장되어 있는 모든 트립 이력을 삭제합니다.
	인버터 본체 SW 가 버전 업되어 코드가 추가되었을 때 이전 버전의
	LCD 로더에서 추가된 코드를 표시하고 기능이 동작하도록 설정하는
CNF-60 Add Title Up	기능입니다. 이 코드의 설정 값을 1(Yes)로 설정하고 LCD 로더를
	본체에서 분리한 후 다시 연결하면 LCD 로더의 타이틀이 새로
	업데이트됩니다.
CNF-62 WH Count Reset	누적된 전력량을 초기화합니다.

5.42 매크로 선택

다양한 응용기능을 하나의 그룹으로 모아 간편하게 설정토록 제공하는 기능으로 현재 7 가지의 기능 설정이 가능합니다. Macro 기능은 인버터에서 제공하는 기능이므로 사용자가 매크로에 포함된 기능 항목을 추가하거나 삭제할 수는 없지만 매크로 그룹에서 데이터 변경은 가능합니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위		
				0	Basic				
				1	Compressor	<u>설정 범위</u> 단 0~7 -			
				2	Supply Fan				
CNF				3	Exhaust Fan	실정 범위 단· - - - - - - - - - - - - - - - - - - -			
	43	Macro 기능 선택	Macro Select	4	Cooling Tower		-		
				5	Circul. Pump				
				6	Vacuum Pump				
				7	Constant Torg				

매크로 설정 상세

Г

코드 및 기능	설명
	적용 부하를 선택하면 관련된 기능을 인버터가 자체적으로 선택하여
	매크로 그룹에서 일괄적으로 변경할 수 있도록 표시합니다 0:Basic 부터
CNF-43 Macro	7:Constant Torque 까지 선택 가능합니다.
Select	단 0:Basic 로 선택할 경우 Macro 파라미터로 따로 분리하지 않고
	파라미터 값들이 초기화 됩니다. 1:Compressor 에서 7:Circul
	Pump 까지는 5.42 Macro 그룹(p.252) 을 참고 하십시오.

5.43 타이머 설정

다기능 입력 단자의 타이머 기능을 사용하면 타이머 설정 시간에 따라 다기능 출력 및 릴레이를 온(On)/오프(Off) 제어할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
IN	65~71	Px 단자 기능 설정	Px Define(Px: P1~P7)	35	Timer In	0~55	-
	31	다기능 릴레이 1 항목	Relay 1	22	Timer Out	0~42	-
OUT	33	다기능 출력 1 항목	Q1 Define				
	55	타이머 온 딜레이	TimerOn Delay	3.00		0.00~100.00	sec
	56	타이머 오프 딜레이	TimerOff Delay	1.00		0.00~100.00	sec

타이머 설정 상세

코드 및 기능	설명
IN-65~71 Px	다기능 입력 단자 중 타이머로 사용할 단자를 35(Timer In)로
Define	설정합니다.
OUT-31 Relay1,	타이머로 사용할 다기능 출력 단자 또는 릴레이를 22(Timer out)로
Define	설정합니다.
OUT-55	타이머(Timer In)로 설정된 단자에 신호가 입력(On)되면 OUT-55
TimerOn Delay,	코드에서 설정한 시간이 지난 후 타이머 출력(Timer Out)이
OUT-56	동작합니다. 다기능 입력 단자가 오프(Off)되면 OUT-56 코드에서
TimerOn Delay	설정한 시간이 지난 후에 다기능 출력 또는 릴레이가 오프(Off)됩니다.

5.44 MMC(Multi-Motor Control)

Г

펌프 시스템에서 복수대의 모터를 한대의 인버터로 제어 하는 경우 사용합니다. 인버터 출력에 연결된 모터(주모터)는 PID 제어에 의해 속도 제어를 하고, 나머지 모터(보조 모터)는 인버터 내부의 릴레이에 의해서 상용 전원에 연결되어 On/Off 제어를 하게 됩니다.

그룹	코드	명칭	LCD 표시	설정 값	설정범위		단 위
	40	MMC 기능 사용 여부 선택	MMC Sel	0:No	0 1 2 3 4 ⁶	None Single Ctrl Multi Follower Multi Master Serve Drv	-
	41	바이패스 선택	Regul Bypass	0:No	0	No Yes	-
	42	보조모터 개수선택	Num of Aux	5	1 ~ A	wxMaxMotor7	-
	43 ⁸	시작 보조 모터 선택	Starting Aux	1	1~5	5	-
AP1	44	보조 모터 동작 개수 표시	Aux Motor Run	-	-		-
	45	1~4 보조모터의 우선순 위 표시	Aux Priority 1	-	-		-
	46	5~8보조모터의 우선순 위 표시	Aux Priority 2	-	-		-
	18	정지시 보조모터 동작	Aux All Stop	0·No	0	No	_
	48	설정	Aux All Stop	U.INO	1	Yes	-

<mark>응용</mark> 기년

⁶ AP1-40 의 설정이 (4: Serve Drv)로 설정되는경우 AP1-41~87 파라메터와 AP1-91~98 파라메터는 나타나지 않습니다.

⁷ AuxMaxMotor 는 확장 IO 옵션이 연결된 경우와 AP1-40 의 설정이 2~3으로 설정되는경우는 8, 그외의 경우는 5 입니다.

⁸ AP1-49 의 설정이 (2: Op Time Order)로 설정된경우는 선택 불가능하고 보조모터들의 운전 시간에 따라 자동으로 변화 합니다.

그룹	코드	명칭	LCD 표시	설정 값	설정범위	단 위
	49	보조 모터 시퀀스 선택	Aux On/Off Seq	0:FILO	0 FILO 1 FIFO 2 Op Time Order	-
	50	보조 모터 동작 압력차	Aux Start Diff	2	0~100	Unit
	51	보조모터수 감소시 주 모터 가속시간	Aux Acc Time	2	0 ~ 600.0	Sec
	52	보조모터수 증가시 주 모터 감속시간	Aux Dec Time	2	0 ~ 600.0	Sec
	53	보조 모터 기동 지연 시간	Aux Start DT	5	0.0 ~ 999.9	Sec
	54	보조 모터 정지 지연 시간	Aux Stop DT	5	0.0 ~ 999.9	Sec
	55	오토 체인지 모드 선택	Auto Ch Mode	0:None	0 None AUX Exchange 2 MAIN Exchange	-
	56	오토 체인지 시간	Auto Ch Time	72:00	00:00 – 99:00	Min
	57	오토 체인지 주파수	Auto Ch Level	20.00	Low Freq~ High Freq	Hz
	58	오토체인지운전시간	Auto Op Time	-	-	-
	59	보조 모터 정지 압력차	Aux Stop Diff	2	0~100	Unit
	60	Multi Master 동작시 Aux Motor의 목표 주파 수	Follower Freq	60.00	Low Freq~ High Freq	Hz
	61	제1 보조 모터 기동 주 파수	Start Freq 1	45	Low Freq~ High Freq	Hz
	62	제2 보조 모터 기동 주 파수	Start Freq 2	45	Low Freq~ High Freq	Hz
	62	제3 보조 모터 기동 주 파수	Start Freq 3	45	Low Freq~ High Freq	Hz

그룹	코드	명칭	LCD 표시	설정 값	설정범위	단 위
	64	제4 보조 모터 기동 주 파수	Start Freq 4	45	Low Freq~ High Freq	Hz
	65	제5 보조 모터 기동 주 파수	Start Freq 5	45	Low Freq~ High Freq	Hz
	66 ⁹	제6 보조 모터 기동 주 파수	Start Freq 6	45	Low Freq~ High Freq	Hz
	67	제7 보조 모터 기동 주 파수	Start Freq 7	45	Low Freq~ High Freq	Hz
	68	제8 보조 모터 기동 주 파수	Start Freq 8	45	Low Freq~ High Freq	Hz
	70	제1 보조 모터 정지 주 파수	Stop Freq 1	20	Low Freq~ High Freq	Hz
	71	제2 보조 모터 정지 주 파수	Stop Freq 2	20	Low Freq~ High Freq	Hz
	72	제3 보조 모터 정지 주 파수	Stop Freq 3	20	Low Freq~ High Freq	Hz
	73	제4 보조 모터 정지 주 파수	Stop Freq 4	20	Low Freq~ High Freq	Hz
	74	제5 보조 모터 정지 주 파수	Stop Freq 5	20	Low Freq~ High Freq	Hz
	75	제6 보조 모터 정지 주 파수	Stop Freq 6	20	Low Freq~ High Freq	Hz
	76	제7 보조 모터 정지 주 파수	Stop Freq 7	20	Low Freq~ High Freq	Hz
	77	제8 보조 모터 정지 주 파수	Stop Freq 8	20	Low Freq~ High Freq	Hz

Γ

⁹ AP1-66~68, AP1-75~77, AP1-85~87 은 확장 IO 옵션이 연결된 경우와 AP1-40의 설정이 2~3으로 설정되는경우 나타 납니다.

<u>응용</u> 기능

그룹	코드	명칭	LCD 표시	설정 값	설정범위	단 위
	80	보조모터 1의	Aux1 Ref	0	0~I Init Band	Linit
	00	Reference 보상량	Comp	0		01110
	81	보조모터 2의	Aux2 Ref	0	0~Unit Band	Unit
		Reference 보상량	Comp	°		0
	82	보조모터 3의	Aux3 Ref	0	0~Unit Band	Unit
	02	Reference 보상량	Comp	Ŭ		01110
	83	보조모터 4의	Aux4 Ref	0	0~Unit Band	Linit
	00	Reference 보상량	Comp	Ŭ		01110
	84	보조모터 5의	Aux5 Ref	0	0~Unit Band	Unit
	04	Reference 보상량	Comp			
	85	보조모터 6의	Aux6 Ref	0	0~Unit Band	Unit
		Reference 보상량	Comp	Ŭ		
	86	보조모터 7의	Aux7 Ref	0	0~Unit Band	Unit
		Reference 보상량	Comp	с 		0.110
	87	보조모터 8의	Aux8 Ref	0	0~Unit Band	Unit
	01	Reference 보상량	Comp	Ŭ		
	90	인터락 선택	Interlock	0:No	0 No 1 Yes	-
		주제어 모터에 인터락/				
	01	오토체인지 발생 시 다	Interlock DT	5.0	0.260.0	Soc
	91	음 주제어모터를 운전		5.0	0~300.0	Sec
		하기 전 지연 시간				
					0 Aux 1	-
	95 ¹⁰	[AP1-96][AP1-97]에 표	AuxRunTime	0	2 Aux 3	-
		시할 보조 모터 선택	261		3 Aux 4	
					4 Aux 5	

¹⁰ AP1-95~98 코드는 MMC 및 Master Follower 동작이 가능한경우 선택 가능 합니다.

그룹	코드	명칭	LCD 표시	설정 값	설정범위	단 위
					5 ¹¹ Aux 6 6 Aux 7	
					7 Aux 8	
	96	[AP1-95]에서 선택한 보 조모터의 운전시간 (Day)	AuxRunTime Day	0	0~65535	Day
	97	[AP1-95]에서 선택한 보 조모터의 운전시간 (Time)	AuxRunTime Min	00:00	00:00 ~ 23:59	Tim e
	98	보조모터의 운전시간 삭제	AuxRunTime Clr		0 None 1 All 2 Aux 1 3 Aux 2 4 Aux 3 5 Aux 4 6 Aux 5 7 Aux 6 8 Aux 7 9 Aux 8	

MMC 설정 상세

Г

코드 및 기능	설명
	MMC 동작 설정을 선택합니다.
	None:MMC 동작 비 활성화
	Single Ctrl : 일반 MMC 동작
AF 1-40 MINIC Sei	Multi Follower : Master Follower 기능을 Multi Follower 모드로 동작
	Multi Master : Master Follower 기능을 Multi Master 모드로 동작
	Serve Drv : Master Follower에 사용될 Serve Drive설정
AP1-42 Num of Aux	보조모터의 개수를 선택합니다.

¹¹ AP1-95 의 5~7 과 AP1-98 의 7~9 파라메터는 확장 IO 옵션이 연결된 경우와 AP1-40 의 설정이 2~3 으로 설정되는경우 나타 납니다

응용 기능 사용하기

코드 및 기능	설명
AP1-43 Starting Aux	시작 보조모터를 설정합니다.
AP1-44 Aux Motor Run	운전중인 보조모터의 개수를 표시합니다.
AP1-45~46 Aux Priority1~2	보조모터의 운전 우선 순위를 표시합니다. 이는 사용자의 기능 설정 여부에 따라 Interlock, AutoChange 및 운전 시간의 영향으로 변경될 수 있습니다. 파라메터가 나태내는 4자리 각 자릿수는 보조모터의 번호를 의미하고 해당 자릿수에 나타낸 숫자가 보조모터의 우선순위를 나타냅니다. 즉 [AP1-45 Aux Priority1]의 가장 우측의 숫자는 제1 보조모터의 우선순위를 나타내고, 우측에서 두번째 숫자는 제2 보조모터의 우선순위를 나타냅니다. [AP1-45 Aux Priority1] Image: Comparison of the transform Image: Comparison of transform
AP1-48 Aux All Stop	운전 정지 명령 입력시 [AP1-48 Aux All Stop] 을 No로 설정할 경우에는 보조모터들이 동시에 꺼지며 [AP1-48 Aux All Stop] 을 YES로 설정하면 [AP1-54 Aux Stop DT]의 시간에 따라서 순차적으로 보조모터들이 OFF됩니다.
AP1-49 Aux On/Off Seq	MMC의 동작 우선순위를 설정 합니다. FIFO : 보조 모터의 On/Off 순서가 동일

٦

코드 및 기능	설명
	FILO : 보조 모터의 On/Off 순서가 반대
	Op Time Order : 보조 모터의 운전 시간에 따라 On/Off 순서가 자동
	결정.
AD1 50 Aux Stort	다음번 보조 모터를 켜거나 끄기위한 조건의 하나로써 현재
Diff	레퍼런스와 피드백의 차가 일정 값 이상 되어야 보조 모터가 켜지거나
AP1-59 Aux Stop	꺼지게 되는데 이 레퍼런스와 피드백의 차이를 설정하는 파라미터
Dill	입니다.
	AP1-40 MMC Sel이 Single Ctrl 인 경우 사용되는 파라메터 입니다.
	보조모터가 기동하거나 정지할 때 주 모터는 PID제어를 멈추고 일반
	가/감속 운전을 합니다. 보조 모터가 기동하는 경우 주 모터는 보조
AP1-51 Acc Time AP1-52 Dec Time	모터 감속 주파수(AP1-70~74 Stop Freq 1~5)까지 AP1-52 Dec Time에
	설정한 감속 시간으로 감속합니다. 반대로 보조 모터가 정지할 때에는
	주 모터는 AP1-51 Acc Time에 설정한 가속 시간으로 보조 모터 기동
	주파수(AP1-61~65 Start Freq1~5)까지 가속합니다.
AP1-53 Aux Start	현재 레퍼런스와 피드백의 차가 AP1-50 Actual Pr Diff 이상 발생하고
D I AP1-54 Aux Stop	보조모터 기동 지연 시간(Aux Start DT) 또는 보조모터 정지 지연
DT	시간(Aux Stop DT)이 경과된 후 보조모터가 켜지거나 꺼지게 됩니다.
AP1-61~65 Start Freq1~5	보조 모터의 기동 주파수를 설정합니다.
AP1-70~74 Stop Freq 1~5	보조 모터의 정지 주파수를 설정합니다.
AP1-95 AuxRunTime	AP1-96과 AP1-97에서 보고자하는 보조모터를 선택 합니다.
AP1-96 AuxRunTime Day	AP1-95에서 선택한 보조모터의 운전 시간(day)을 표시 합니다.
AP1-97	AD1 05에서 서태하 비즈ㅁ터이 오저 시간(Hours Minute)은 표시 하니다
AuxRunTime Min	APT-95에서 전력한 포포포디의 훈련 시전(Hour Minute)을 표시 합니다.
AP1-98 AuxRunTime Clr	보조모터의 운전 시간 삭제합니다.
OUT-31~35 Relay 1~5	MMC(21)을 보조모터 설정 개수만큼 설정해 주어야 합니다.

Γ

코드 및 기능	설명
OUT-36 Q1 Define	

5.44.1 MMC 기본 시퀀스

MMC 는 PID 운전을 기본으로 하며 주모터와 보조모터들의 유기적 관계에 의해 동작한다. 보조모터가 On 되는 조건은 PID 운전을 하는 중에 운전 주파수가 AP1-61~65 번의 Start freq 에 도달하고 PID Reference 값과 PID Feedback 값의 차이가 AP1-50 보다 큰 경우 보조 모터가 ON 된다. 보조 모터가 꺼지는 조건은 PID 운전을 하는 중에 운전 주파수가 AP1-70~74 Stop Freq1~5 에 도달하고 PID Feedback 값과 PID Reference 값의 차가 AP1-50 에 설정한 값 이상이 되면 보조모터가 OFF 된다.

그룹	코드	명칭	LCD 표시	설정 값	설정범위	단위
AP1	61– 65	#1–5 auxiliary motor start frequency	Start Freq 1– 5	Frequency value within the range	Low Freq– High Freq	Hz
	50	Auxiliary motors pressure difference	Actual Pr Diff	Percentage value within the range	0–100 (%)	%
	70– 74	#1–5 auxiliary motor stop frequency	Stop Freq 1– 5	Frequency value within the range	Low Freq– High Freq	Hz

아래 그림은 AP1-49 Aux On/Off Seq 방법에 따른 MMC 기본 시퀀스이다.

<u>MMC 기본 동작(FILO)</u>

<u>MMC 기본 동작(FIFO)</u>

<u>MMC 기본 동작(OP Time Order)</u>

응용 기능 사용하기

아래 그림은 AP1-53 보조모터 기동 지연 시간, AP1-54 보조모터 정지 지연 시간에 대한 그림 파형이다. 그림에서보는 것과 같이 AP1-53 에 값을 설정하게 되면 보조모터는 보조 모터 해당 StartFreq 에 도달했을 때 ON 되는 것이 아니라 StartFreq 에 도달하고 AP1-53 의 설정 시간만큼 지연된 후에 보조 전동기가 On 된다. 보조모터가 꺼지는 시퀀스에서도 보조모터가 해당 Stopfreq 에 도달한 후 AP1-54 에 설정된 시간만큼 지연 후에 보조모터가 OFF 된다.

부하 감소에 의한 보조 전동기 정지 시퀀스

5.44.2 Standby Motor(예비 모터)

Г

[OUT 그룹]에 존재하는 [Relay1~5]에서 MMC 로 설정한 개수 보다 [Num of Aux]의 수가 작은 경우, 그 차이만큼의 보조모터는 Standby motor 상태이다.

Ex) Relay1,2,3,4,5 가 MMC 로 설정 / [Num of Aux]=3 으로 설정한 경우

Relay1	Relay2	Relay3	Relay4	Relay5
Operable	Operable	Operable	Standby	Standby

이와 같은 경우 Relay 1, 2, 3 번만 MMC 동작을 수행하고, Relay 출력을 MMC 로 설정 하였어도 Standby motor 는 Interlock 및 Auto Change 에 의해 동작 순서가 바뀌지 않는한 동작하지 않는다.

동작 가능한(Operable) 보조모터에 Interlock 및 Autochange 가 발생하는 경우 Standby 보조모터가 Operable 로 대체 한다.

5.44.3 Auto Change(모터 자동 절체)

주모터 또는 보조모터의 동작 순서를 자동으로 절체 할 수 있다. 일부 모터를 연속 운전할 경우 모터 수명에 영향을 미치기 때문에 일정 조건이 되면 동작 순서를 바꾸어 사용 시간을 균일하게 유지 하도록 하는 기능이다.

그룹	코드	명칭	LCD 표시	설정 값		설정범위		단위
AP1	55	Auto change mode selection	Auto Ch Mode	0	None	0	None	-
				1	Aux motor	1	AUX Exchange	
				2	Main motor	2	Main Exchange	
	56	Auto change time	Auto Ch Mode	Time value within the range		00: 00–99: 00		Sec.
	57	Auto change frequency	Auto Ch Level	Frequency value within the range		Low Freq– High Freq		Hz
	58	Auto change operation time	Auto Op Time	Time value within the range		-		Sec.

Auto Change 상세 설정

코드 및 기능	설명				
	Auto Change를 할 시에 보조 모터들을 Auto Change를 할 것인지				
	주제어 모터들을 Auto Change를 할것인지 설정한다.				
AP1-55 Auto Ch	모드 설명				
MODE	0 None				
	1 Aux Exchange				
	2 Main Exchange				
AP1-56 Auto Ch Time	Auto Change 발생 주기를 설정합니다.				
	해당 파라메터는 Main Exchange전용 파라메터로서 [AP1-55 Auto Ch				
	Mode]를 Main Exchange로 설정 한경우 Auto Change가 발생하기				
AP1-57 Auto Ch Level	위해서는 모든 보조 모터가 정지한 상태에서 주제어 모터의 출력				
	주파수가 AP1-57에 설정된 값 이하에서 Auto Change 발생 조건을				
	만족하는데 AP1-57은 Auto Change 를 동작시키기 위한 주파수이다.				
	Auto Change를 발생 시키기위한 시간을 표시한다. 이는 AP1-56의				
AP1-58 Auto Op	조건을 만족하더라도 Auto Change가 발생하는 다른 조건을 만족하지				
Time	못한 경우에는 Auto Change가 발생하지 않기 때문에 AP1-58의 시간은				
	AP1-56의 Auto Ch Time에 설정되어 있는 값보다 클 수 있다.				

Auto Change Mode 상세 설명

주 모터 또는 보조 모터의 동작 순서를 자동으로 전환할 수 있습니다. 일부 모터만 계속해서 운전할 경우 모터 수명에 영향을 주므로, 일정 조건이 되면 동작 순서를 바꾸어 사용 시간을 균일하게 유지할 수 있도록 합니다. AP1-55 Auto Ch Mode 에 따라 다음과 같이 동작합니다.

0: None

보조 모터의 동작 순서는 AP1-43 의 Starting Aux 에 설정된 번호에서 시작되며, 자동 절체 기능은 동작하지 않습니다.

1: Aux Exchange

보조 모터의 동작 순서는 AP1-43 의 Starting Aux 에 설정된 번호에서 시작되며, Auto Change 발생 조건은 AP1-56 의 시간 이상 보조모터가 운전한 상태에서 모든 보조모터들이 꺼지는 시점에 자동절체 기능이 동작 합니다. Auto Change 가 발생하면 가장 먼저 켜졌던 보조모터의 우선 순위를 가장 낮은 순위로 만듭니다.-> Auto Change 가 발생된 보조모터(가장 먼저 켜졌던 보조모터) 보다 낮은 우선 순위를 갖고 있던 보조모터들은 우선 순위가 한단계씩 상승합니다.-> 정상적으로 MMC 동작을 수행합니다.

Г

참고: 보조모터 운전 중에는 Auto Change 가 발생하지 않습니다. 보조 모터가 정지되고 Auto Change 조건을 만족할 시에 위에서 열거한 대로 Auto Change 동작을 수행합니다. 인버터 정지 지령 시에는 모든 모터가 정지된 후 우선 순위가 가장 높은 보조 모터를 Starting Aux 로 변환하여 우선 순위를 재정렬합니다. 인버터 정지 신호가 아닌 인버터 전체 전원을 껐다가 켠 경우에는 AP1-43 에 설정된 Starting Aux 가 시작 모터가 됩니다.

구동 순서와 정지 순서는 AP1-49 FIFO/FILO 에 설정에 따라서 달라집니다 아래 그림에서는 FIFO 방법으로 보조모터가 순차적으로 켜지고 PID Feedback 의 상승에 의해서 보조모터가 꺼지는 시퀀스 동작을 보여주고 있다. 아래 그림에서는 인버터 운전 시간이 AP1-58 에 설정한 시간보다 길다는 조건을 전제로 하고 있다. 보조 모터가 모두 OFF 상태이고(조건 2), 인버터 운전 주파수가 AP1-57 에 설정한 주파수보다 낮을 경우(조건 3) 보조모터 Aux Auto Chage 조건을 만족하여 Auto Change 기능이 동작한다. 그 후 PID Feedback 값의 하강으로 인해 인버터 출력 주파수가 상승하여 보조모터가 켜질 시 Aux Auto Change 기능 동작으로 인하여 보조모터 1 번이 켜지는 것이 아닌 보조모터 2 번이 가장 먼저 켜지게 되며, 보조모터 1 번은 가장 나중에 켜지게 된다. Feedback 상승으로 인하여 보조모터가 OFF 될 경우에는 FILO 방법으로 OFF 됩니다.
응용 기능 사용하기

<u>Aux Auto Change 동작(FIFO)</u>

Operable Motor = 3 / Standby Motor = 2 "I ك Aux Aut o Change ن O (Op Time Order)

2: Main Exchange

ſ

주 동기와 보조 모터의 구분 없이 자동 절체를 할 수 있습니다. 우선 순위가 가장 높은 보조 모터를 주제어 모터로 동작하여 운전중 Auto Change 조건을 만족하게 되면 주제어 모터를 정지하고 우선 순위를 변경하여 항상 가장 높은 우선 순위의 보조 모터를 주제어 모터로 MMC 운전을 합니다. 이 때, Main Motor 가 절체 될 때에는 Interlock DT 의 지연시간이 적용됩니다.

참고: 보조모터 운전중에는 Auto Change 가 발생하지 않습니다. 보조 모터가 정지되고 Auto Change 조건을 만족할 시에 위에서 열거한 대로 Auto Change 동작을 수행합니다. 인버터 정지 지령 시에는 모든 모터가 정지된 후 우선 순위가 가장 높은 보조 모터를 Starting Aux 로 변환하여 우선 순위를 재정렬합니다. 인버터 정지 신호가 아닌 인버터 전체 전원을 껐다가 켠 경우에는 AP1-43 에 설정된 Starting Aux 가 시작 모터가 됩니다.

아래 그림은 Main Auto Change 관련 그림이며, 이 그림에서는 인버터 운전 시간이 AP1-58 에 설정한 시간보다 길다는 조건(조건 1)을 가정하였다. 인버터 운전 주파수가 AP1-57 에 설정한 주파수보다 낮을 경우(조건 2) Starting Aux 에 해당하는 보조 모터까지 모두 OFF 된다. AP1-91 에 설정한 Interlock DT 시간 후(조건 3) Main Auto Chage 기능이 동작한다. Main Auto Change 발생 이후의 Main 모터는 Starting Aux 이후에 켜졌던 보조 모터가 된다. 아래 그림에서는 Starting Aux 가 1 이였기 때문에 Main Auto Change 동작 후 Main 모터는 2 번이 됐다. 보조모터 On/Off 동작은 Aux Exchange 기능과 동일하며 꺼지는 조건은 FILO/FIFO 방법에 의해 달라진다.

٢

응용 기능 사용하기

Operable Motor = 3 / Standby Motor = 2 일때 Main Auto Change 동작 (Op Time Order)

5.44.4 인터락(Interlock)

Г

모터에 이상이 발생한 경우 해당 모터의 구동을 멈추고 정지 상태에 있는 모터로 대체 운전을 하는 기능입니다. 이상 신호를 인버터 입력 단자에 연결하고 해당 단자의 기능을 Interlock 1~5 번으로 설정하면 단자 입력 상태에 따라 모터의 구동 여부를 판단합니다. 대체 운전하는 순서는 앞서 설명한 모터 오토 체인지 모드 선택(AP1-55)의 설정 값에 따라 다르게 동작합니다.

그룹	코드	명칭	LCD 표시	설정 값	설정범위		단위
AP1	90	Interlock selection	Interlock	1	0	NO	
				Ι	1	YES	-

IN-65~71 의 단자대에 Interlock 1~5 을 설정한 후에 Interlock 신호가 입력되었을 경우 해당 보조 모터의 다기능 접점 출력은 Off 되고 MMC 동작에서 제외됩니다. Interlock 이 발생한 보조모터보다 우선 순위가 낮은 보조 모터의 우선 순위가 상승합니다.

IN65~71 의 단자대에 Interlock 1~5 번을 설정하고 그 중에 다기능 입력 신호 Interlock 신호가 들어와 있는 다기능 입력을 해제할 경우 Interlock 이 해제되며 다기능에 해당하는 보조 모터는 MMC 동작을 재개하며 우선순위는 최하위가 됩니다.

인버터 정지 명령이 있을 시 모든 모터는 정지되며 우선 순위가 가장 높은 보조 보터를 Starting Aux(시작 모터)로 하여 우선순위를 재정렬 하게 됩니다.

Interlock 기능 설정 시에 다기능 입력(IN-65~71 P1~7 Define)의 Interlock 신호는 접점이 유효할 경우 Interlock 이 들어오지 않은 상태이고 접점이 무효일 경우 Interlock 발생 신호이다.

InterLock 상세 설정

코드 및 기능	설명
AP1-90 InterLock	Interlock 기능 사용 여부를 설정합니다.
AP1-91 Interlock	Interlock 신호가 들어오고 AP1-91에 설정되어 있는 시간 만큼 딜레이
DT	후에 Interlock 동작을 수행합니다.

참고) IN-65~71 Px Define: 입력 단자대 기능 그룹의 IN-65~71 번 가운데 인터락으로 사용 할 단자를 선택한 후 모터 순서에 맞게 Interlock 1~5 번을 각각 설정 합니다. 오토 체인지 모드 선택(AP1-55)이 0(None) 또는 1(Aux)로 설정 되어 있고 주 모터를 포함해서 총 5 대의 모터를 구동하는 경우 보조 모터 1,2,3,4 가 인버터 출력 단자 Relay1,2,3,4,5 에 연결이 되었다면 인터락 번호 1,2,3,4,5 는 Relay1,2,3,4,5 에 연결된 모터에 해당 됩니다. 그러나 오토 체인지 모드 선택(AP1-55)이 2(Main)번으로 설정되어 있고 주 모터 및 보조 모터가 인버터 출력단자 Relay1,2,3,4 에 각각 연결되어 있다면 Interlock 1,2,3,4 는 Relay1,2,3,4 에 연결된 모터에 해당 됩니다

아래 그림에서는 FILO 방법으로 모터가 Starting Aux 부터 순차적으로 켜지고 PID Feedback 의 상승에 의해서 모터가 꺼지는 시퀀스로 동작하는 것을 볼 수 있다. 이 때 다기능 입력으로 보조모터 2 번에 인터락이 발생하여 해당 보조 모터가 Off 하게 되며 이 때 출력 주파수는 AP1-71 에 설정된 주파수까지 떨어졌다가 상승하게 된다. 이후 보조모터 1 번에 인터락이 발생하여 해당 보조모터 정지 및 AP1-71 에 설정된 주파수까지 떨어졌다가 상승하게 된다. 2 번 인터락을 먼저 해지하고 그 이후에 1 번 인터락을 해지하여 보조모터가 모두 운전하게 된다(인터락 해제가 되면 운전하고 있는 모터들 중 가장 낮은 순위를 갖게 된다. 그 이후 Feedback 의 상승으로 인하여 보조모터가 Off 하게 될 경우 FIFO 방법에 의해 1 번 보조모터가 가장 나중에 켜졌기 때문에 1 번 보조모터 2 번,5 번,4 번,3 번 순서대로 보조모터가 Off 하게 된다. 위에서 언급한 것과 같이 인터락이 발생한 보조모터의 우선 순위는 최하위가 된다.

Interlock 동작(FILO)

Γ

Operable Motor = 3 / Standby Motor = 2 일때 Interlock 동작 (Op Time Order)

위의 그림에서 발생했던 인터락이 해제 되면서 보조 모터의 우선순위들은 달라지게 된다. 보조모터 2 번이 인터락이 발생했을 시 보조모터의 우선 순위는 보조모터 1 번>3 번>4 번>5 번>2 번 순서 였고 그 뒤에 보조모터 1 번이 인터락이 발생했을 시 보조모터 우선 순위는 3 번>4 번>5 번>2 번>1 번이 됐다. 인터락 해제 된 순서가 2 번,1 번으로 순차적이기 때문에 3 번>4 번>5 번>2 번>1 번의 우선 순위는 바뀌지 않았다. 아래 그림은 위의 우선 순위에 따라서(인터락 발생 후 해제로 인하여 우선 순위 변경) 보조모터가 켜지는 순서입니다. 아래 그림은 FILO/FIFO 두 경우 보조모터가 ON 되는경우이기 때문에 동일합니다.

Г

Operable Motor = 3 / Standby Motor = 2 인 경우에는 Aux Motor 2 ←→ Aux Motor 4 ←→ Aux Motor 5 순서로 동작합니다.

5.44.5 운전 시간 변경(Aux Motor Time Change)

[AP1-98 AuxRunTime Clr]의 <1: All>을 통해 모든 전동기의 운전시간을 삭제하는 경우 [AP1-43 Starting Aux]가 인터락 걸리지 않은 Drive 중에 전동기 번호가 가장 작은 번호로 설정되며 이를 기준으로 순서대로 정렬한다. [AP1-98 AuxRunTime Clr]의 <2: Aux1> ~ <6: Aux5>을 통해 개별 전동기의 운전시간을 삭제하거나 [AP1-96 AuxRunTime Day]와 [AP1-97 AuxRunTime Min] 의 조합을 통해 개별 전동기의 운전시간을 변경 하는 경우는 운전되는 전동기는 운전되는 전동기끼리, 정지되어 있는 전동기는 정지되어 있는 전동기끼리 우선순위를 변경한다. 아래 표는 Sequence1 과 같은 상태를 가정한 조건에서 운전중인 Aux Motor 2 의 운전시간을 변경하는 경우를 나타낸다.

C	Aux Priority 1	Aux Priority 2	Aux Priority 3	Aux Priority 4	Aux Priority 5			
Sequences	(운전시간:분)	(운전시간:분)	(운전시간:분)	(운전시간:분)	(운전시간:분)			
1	Aux Motor3 (00:30)	Aux Motor2 (00:40)	Aux Motor1 (00:50)	Aux Motor4 (01:30)	Aux Motor 5 (01:50)			
I	<운전중>	<운전중>	<운전중>	<정지상태>	<정지상태>			
[AP1-98 AuxRunTime Clr]의 <3: Aux2> 선택								
2	Aux Motor2 (00:00)	Aux Motor3 (00:30)	Aux Motor1 (00:50)	Aux Motor4 (01:30)	Aux Motor 5 (01:50)			
2	<운전중>	<운전중>	<운전중>	<정지상태>	<정지상태>			
[AP1-97 AuxRunTime Min]을 통해 Aux2 의 시간을 2:00 으로 변경								
3	Aux Motor3 (00:30)	Aux Motor1 (00:50)	Aux Motor2 (02:00)	Aux Motor4 (01:30)	Aux Motor 5 (01:50)			
	<운전중>	<운전중>	<운전중>	<정지상태>	<정지상태>			

아래 표는 Sequence1 과 같은 상태를 가정한 조건에서 정지상태인 Aux Motor5 의 운전시간을 변경하는 경우를 나타낸다.

G	Aux Priority 1	Aux Priority 2	Aux Priority 3	Aux Priority 4	Aux Priority 5				
Sequences	(운전시간:분)	(운전시간:분)	(운전시간:분)	(운전시간:분)	(운전시간:분)				
1	Aux Motor3 (00:30)	Aux Motor2 (00:40)	Aux Motor1 (00:50)	Aux Motor4 (01:30)	Aux Motor 5 (01:50)				
I	<운전중>	<운전중>	<운전중>	<정지상태>	< 정지상태>				
	[AP1-98 AuxRunTime Clr]의 <6: Aux5> 선택								
2	Aux Motor3 (00:30)	Aux Motor2 (00:40)	Aux Motor1 (00:50)	Aux Motor 5 (0)	Aux Motor 4 (01:30)				
2	<운전중>	<운전중>	<운전중>	<정지상태>	<정지상태>				
[AP1-97 AuxRunTime Min]을 통해 Aux5의 시간을 2:00 으로 변경									
2	Aux Motor3 (00:30)	Aux Motor2 (00:40)	Aux Motor1 (00:50)	Aux Motor4 (01:30)	Aux Motor 5 (02:00)				
3	<운전중>	<운전중>	<운전중>	<정지상태>	<정지상태>				

5.44.6 레귤러 바이패스 (Regular ByPass)

PID를 이용하여 주 모터의 속도를 제어하지 않고 피드백 량으로 속도를 제어하는 기능입니다. 피드백량의 크기에 따라 보조 모터의 운전 및 정지를 제어합니다.

그룹	코드	명칭	LCD 표시	설정 값		설정범위		단위	
	41	Bypass selection	Regul Bypass	1		0	No	_	
	••	Dypase colocion	rtega Dypace				Yes		
AP1	61– 65	#1–5 auxiliary motor start frequency	Start Freq 1–5	Frequency value within the range		Freq Low Limit–Freq High limit		Hz	
	70– 74	#1–5 auxiliary motor stop frequency	Stop Freq 1–5	Frequency value within the range		Lc Hi	w Freq– gh Freq	Hz	
OUT	31– 35	Multi-function relay1–5	Relay 1–5	21 Multiple motor control(MMC)		-		-	
	36	Multi-function 1 item	Q1 Define	40	KEB Operation	-		-	

Regular ByPass 상세 설정

Г

코드 및 기능	설명				
AP1-41 Regular Bypass	Regular Bypass Mode 동작 여부를 설정합니다. 모드 설명 0 No 1 Yes				
AP1-61~65 Start Freq1~5	보조 모터의 기동 주파수를 설정합니다.				
AP1-70~74 Stop Freq 1~5	^번 조 모터의 정지 주파수를 설정합니다.				
OUT-31~35 Relay 1~5 OUT-36 Q1 Define	MMC(21)을 보조모터 설정 개수만큼 설정해 주어야 합니다.				

PID 피드백으로 설정한 아나로그 입력 단자(I or V1 or Pulse)의 입력이 100%일 때를 주제어 모터를 포함한 보조 모터의 대수만큼의 영역으로 분할하고 각 보조 모터의 전동기는 피드백이 해당 영역에 도달했을 때 켜지게 되며 해당 영역 이하일 때 꺼지게 됩니다.. 주제어 모터는 피드백에 따라 증가하다가 해당 보조 모터의 기동주파수에 도달하면 정지주파수까지 감속한 후 다시 피드백의 상승에 따라 주파수가 증가하며 피드백이 감소하여 보조 해당 모터가 꺼지면 정지주파수에서 기동주파수까지 가속합니다.

Regular Bypass 기능을 사용하기 위해서는 MMC 및 PID 기능이 1:Yes 로 선택되어 있어야 하며, 또한 Regular Bypass 에서는 AP1-49 FIFO/FILO 기능 중 FILO 만 동작 가능합니다.

Regular ByPass

5.44.7 보조 모터 PID 보상 기능(Aux Motor PID Compensation)

운전 하는 보조모터 개수가 증가할수록 파이프의 유량이 증가 하기 때문에 관로의 압력은 줄어들게 되는데 이 압력을 보상하기 위해서 보조모터가 켜질 때 마다 해당 보조 모터에 맞는 PID 추가 레퍼런스 값을 기존 레퍼런스에 더해주어 압력 손실을 보상하는 기능입니다.

보조 모터 PID 보상 상세 설정

Г

LSELECTRIC 283

< 보조 모터 PID 보상 기능>

참고

Aux Reference 값을 100%로 설정하게 되면 PID 최종 레퍼런스가 100%가 되게 됩니다. 이때 Feedback 값이 100%값이 들어오더라도 PID 출력이 감속하지 않게 되어 인버터 출력 주파수 감속이 이루어 지지 않습니다. 보상량 설정에 참고하십시오.

5.44.8 마스터 팔로워 (Master Follower)

마스터 팔로워는 여러 대의 인버터를 하나의 인버터로 제어하는 기능이다.

[COM-01 Int485 St ID] 가 1 이고, [AP1-40 MMC Sel]을 <2 : Multi Follower> 또는 <3 : Multi Master>로 선택 되어져 있는 인버터를 {Leader Drive}라 하고, 나머지 <4 : Serve Drv>로 선택된 인버터들을 {Serve Drive}라 한다.

Leader Drive

센서의 PID Feedback 을 받아 PID 제어를 하고 Multi Motor 제어를 하며 통신의 마스터 역할을 하는 인버터로서 Soft Fill(Pre-PID)기능, Sleep/WakeUp 기능, 보조 모터 PID 보상 기능(Aux Motor PID Compensation) 에 한하여 Leader 에 설정이 되어 있으면 최초로 켜지는 Drive 가 해당 기능 동작을 수행 한다.

Serve Drive

Leader Drive 의 제어를 받아 모터를 구동하는 인버터이다

각 인버터의 번호와 전동기의 번호(ID)는 [COM-01 Int485 St ID]이다. 운전중인 전동기중 우선순위가 가장 늦은 전동기를 {Main Motor}라 하고, 나머지 전동기 들을 {Aux Motor}라 한다. ※ 모든 전동기가 정지되어 있는경우는 우선순위가 가장 빠른 전동기를 {Main Motor}라 한다. 즉, {Main Motor}와 {Aux Motor}들은 상황에 따라 변경되고, {Leader Drive}와 {Serve Drive}들은 고정이다. 아래 그림은 마스터 팔로워의 기본 구성을 나타낸다.

① 주의

Г

마스터 팔로워를 사용하기 위한 모든 Drive 의 통신 국번은 중복 되지 않아야 합니다. Leader Drive 는 반드시 1 대여야 합니다. Leader Drive 와 마지막 Drive 의 통신 종단 저항을 On, 나머지 Drive 의 종단 저항은 Off 하여 주십시요.

5.44.8.1 Multi Mater Mode

Main Motor 만 PID 제어되고 운전중인 Aux Motor 는 Follower Freq 로 운전하는 모드이다. 아래 그림은 우선순위가 Motor1 (M1)←→Motor2 (M2)←→Motor3 (M3)인 경우를 나타낸 그림이다. (우선순위는 운전시간에 따라 자동 변경된다.)

응용 기능 사용하기

Aux Motor 가 추가로 켜지는 조건

Main Motor 의 실제 운전 주파수가 다음 우선순위 번호에 해당하는 Start Freq 에서 설정한 주파수에 이른 후, AP1-53(Aux Start DT) 에서 설정한 시간 후에 AP1-44(Aux Motor Run) 이 증가(+1)하고, 현재의 Main Motor 는 [AP1-60 Follower Freq]까지 [DRV-03 Acc Time]/[DRV-04 Dec Time]의 시간으로 변속하며 Aux Motor 가 된다. 동시에 다음 우선순위에 해당하는 인버터가 ON 되면서 해당 전동기가 Main Motor(PID 제어되는 Motor)가 된다. 우선순위는 [AP1-45/46 Aux Priority]에서 확인 가능하다.

Aux Motor 가 꺼지는 조건

Main Motor 의 실제 운전 주파수가 자신의 번호에 해당하는 Stop Freq 에서 설정한 주파수 보다 작게 되면, AP1-54(Aux Stop DT) 에서 설정한 시간 후에 AP1-44 (Aux Motor Run) 이 감소(-1)하고, 현재의 Main Motor 는 0Hz 까지 [DRV-04 Dec Time]의 시간으로 감속하며 Aux Motor 가 된다. 동시에 이전 우선순위에 해당하는 전동기가 Main Motor(PID 제어되는 Motor)가 된다. 우선순위는 [AP1-45/46 Aux Priority]에서 확인 가능하다.

5.44.8.2 Multi Follower Mode

켜져 있는 전동기가 모두 같은 PID 출력 주파수로 제어되는 모드.

아래 그림은 우선순위가 Motor1 (M1) ← → Motor2 (M2) ← → Motor3 (M3)인 경우를 나타낸 그림이다. (우선순위는 운전시간에 따라 자동 변경된다.)

Aux Motor 가 추가로 켜지는 조건

Г

Main Motor 의 실제 운전 주파수가 다음 우선순위 전동기 번호에 해당하는 Start Freq 에서 설정한 주파수에 이른 후, AP1-53(Aux Start DT) 에서 설정한 시간 후에 AP1-44(Aux Motor Run) 이 증가(+1)하고 현재 Main Motor 의 다음 우선순위 Aux Motor 가 On 이 되며, 이때 새롭게 운전된 Aux Motor 가 Main Motor 가 된다. 운전중인 전동기들은 모두 같이 PID 제어 된다. 우선순위는 [AP1-45/46 Aux Priority]에서 확인 가능하다.

Aux Motor 가 꺼지는 조건

Main Motor 의 실제 운전 주파수가 자신의 전동기 번호에 해당하는 Stop Freq 에서 설정한 주파수 보다 작게 되면, AP1-54(Aux Stop DT) 에서 설정한 시간 후에 AP1-44 (Aux Motor Run) 이 감소(-1)하고, Main Motor 는 0Hz 까지 [DRV-04 Dec Time]의 시간으로 감속하며 Aux Motor 가 된다. 동시에 나머지 운전중인 전동기들은 PID 제어를 지속한다. 우선순위는 [AP1-45/46 Aux Priority]에서 확인 가능하다.

5.44.8.3 운전 시간에 따른 우선순위 변경

각 Motor 의 우선순위는 운전 시간에 따라 자동 정렬된다.

운전중인 Motor 중 운전시간이 가장 긴 Motor 의 우선순위가 가장 후위에 위치하게 된다.

순위 변경 시점은 운전중인 전동기의 개수가 변경되는 시점이다.

아래 그림은 Multi Master Mode 일 때 M1 의 운전시간이 가장 많은 경우를 나타낸 그림이다.

아래 그림은 Multi Follower Mode 일 때 M1 의 운전시간이 가장 많은 경우를 나타낸 그림이다.

Aux Motor 가 추가로 켜지는 조건과 꺼지는조건은 Multi Master Mode, Multi Follower Mode 설명과 동일 하다.

5.44.8.4 Master Follower Interlock

Г

Interlock 신호는 Drive 에서 각각 받으며 Leader Drive 가 통신 Line 을 통해 취합 한다.

Serve Drive 의 HAND State 또는 OFF State 및 모든 Trip 은 Leader Drive 에서는 Interlock 으로 처리한다. 즉, HAND/OFF State 이거나 Trip 이 발생한 Serve Drive 는 제외하고 Master Follower 기능은 유지한다.

Leader Drive 가 HAND State 또는 OFF State 인 경우에는 Master Follower 시스템은 수행 되지 않는다.

Leader Drive 에서 Pipe Broken 및 Interlock Trip 이 발생한 경우는 전체 시스템 Trip 으로서 전체 Drive 운전을 종료하고, 다른 Trip 이 발생한 경우는 Leader Drive 를 제외를 하고 Master Follower 동작을 지속 수행 한다.

(PID 제어 및 전체 시스템 제어는 지속적으로 Leader Drive 가 수행함.)

Ex) 동작 우선순위가 (M1 ↔ M2 ↔ M3 ↔ M4 ↔ M5 ↔ M6 ↔ M7 ↔ M8) 인 경우 [Serve Drive 3]에 Interlock3 또는 어떠한 Trip 이 발생하거나 HAND/OFF State 가 되었다면
(M1 ↔ M2 ↔ M4 ↔ M5 ↔ M6 ↔ M7 ↔ M8)순서로 운전된다.

다음은 M3가 HAND/OFF State가 되거나 인터락 또는 Trip 이 발생하는 경우 동작을 나타낸다. (우선 순위는 변경되지 않았다고 가정), (Interlock 은 B 접점 동작임.)

٦

5.45 다기능 출력 온/오프(On/Off) 제어

Г

아날로그 입력 값에 대한 기준 값(온/오프 레벨)을 설정하고, 이 값에 따라 출력 릴레이 또는 다기능 출력 단자의 온(On)/오프(Off) 상태를 제어할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	
ADV 67	66	출력 접점 온/오프 제어 방법	On/Off Ctrl Src	1	V1	0~8	-
	67	출력 접점 온 레벨	On-C Level	90.00		출력 접점 오프 레벨~ 100.00%	%
	68	출력 접점 오프 레벨	Off-C Level	10.00		0.00~ 출력 접점 온 레벨	%
OUT	31	다기능 릴레이 1 항목	Relay 1	00			
	33	다기능 출력 1 항목	Q1 Define	26 00/01		-	-

다기능 출력 온/오프(On/Off) 제어 설정 상세

코드 및 기능	설명
ADV-66 OnOff Ctrl Src	온/오프(On/Off) 제어에 사용할 아날로그 입력을 선택합니다.
ADV-67 On Ctrl Level ,	출력 단자가 온(On)되는 레벨과 오프(Off)되는 레벨을 각각
ADV-68 Off Ctrl Level	설정할 수 있습니다.

응용 기능 사용하기

5.46 회생 회피

일시적인 회생 동작 상태에서의 제동을 피하고 싶을 때 사용합니다. 동작 중 모터 회생 상태가 발생하면 자동으로 모터 운전 속도를 올려 회생 영역을 방지합니다. ٦

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
	74	회생 회피 기능 선택	RegenAvd Sel	0	No	0~1	-
	75	회생 회피 동작 전압 레벨	Denor Auditorial	350V		200V 급: 300~400V	
	75		RegenAva Level	700V		400V 급: 600~800V	V
	76	회생 회피 보상 주파수	CompErca Limit	1.00 (Hz)		0.00 10.00	LJ-7
		제한	Compried Limit			0.00~ 10.00HZ	ПΖ
	77	회생 회피 P 게인	RegenAvd Pgain	50.0	D(%)	0 .0~ 100.0%	%
	78	· 히색 히피 I게인	RegenAvd Igain	500		20~30000ms	ms
	10			(ms)		2000000113	1113

회생 회피 설정 상세

코드 및 기능	설명
	모터 정속 운전 중 빈번한 회생 전압이 발생하는 경우, 제동
ADV-74 RegenAvd	유닛이 과도하게 동작하여 손상되거나 수명이 짧아질 수 있습니다.
Sel	이런 경우, DC 링크(DC Link) 전압을 억제하여 제동 유닛이
	동작하지 않도록 하기 위해 선택합니다.
ADV-75 RegenAvd	회생 전압에 의해 DC 링크(DC Link) 전압이 상승하는 경우, 제동
Level	동작 회피 레벨 전압을 설정합니다.
ADV-76 CompFreq	회생 동작 영역 회피 중에 실제 운전 주파수 대비 변동 가능한
Limit	주파수 폭을 설정합니다.
ADV-77 RegenAvd	회생 동작 영역을 회피하기 위한 DC 링크(DC Link) 전압 억제 PI
RegenAvd Igain	제어기의 P게인/I게인(P Gain/ I Gain)을 설정합니다.

참고

٢

회생 회피 기능은 가/감속 구간에서는 동작하지 않으며, 모터 운전 상태가 정속 구간일 때만 동작합니다. 회생 회피 기능이 동작하면 정속 운전 중이더라도 출력 주파수가 ADV-76 회생 회피 보상 주파수 제한 (CompFreq Limit)코드에 설정된 범위 내에서 변동할 수 있습니다.

5.47 아날로그 출력

아날로그 출력 단자는 0~10V 전압이나 4~20mA 전류, 0~32kHz 펄스를 출력할 수 있습니다.

5.47.1 전압 및 전류 아날로그 출력

단자대의 AO(Analog Output) 단자에서 출력 항목을 선택하고 출력의 크기를 조정할 수 있습니다. 아날로그 전압/전류 출력 단자 설정 스위치(SW5)를 전환하면 출력 형태(전압/전류) 를 바꿀 수 있습니다.

그룹	꼬	명칭	LCD 표시	설정 값		설정 범위	단위
OUT	01	아날로그 출력 1 항목	AO1 Mode	0	Frequency	0~18	-
	02	아날로그 출력 1 게인	AO1 Gain	100).0	- 1000.0~1000.0	%
	03	아날로그 출력 1 바이어스	AO1 Bias	0.0		-100.0~100.0	%
	04	아날로그 출력 1 필터	AO1 Filter	5		0~10000	ms

그룹	코드	명칭	LCD 표시	설	정 값	설정 범위	단위
	05	아날로그 상수 출력 1	AO1 Const %	0.0)	0.0~100.0	%
	06	아날로그 출력 1 모니터	AO1 Monitor	0.0)	0.0~1000.0	%
	07	아날로그 출력 2 항목	AO2 Mode	0	Frequency	0~18	-
	08	아날로그 출력 2 게인	AO2 Gain	10	0.0	- 1000.0~1000.0	%
	09	아날로그 출력 2 바이어스	AO2 Bias	0.0)	-100.0~100.0	%
	10	아날로그 출력 2 필터	AO2 Filter	5		0~10000	ms
	11	아날로그 상수 출력 2	AO2 Const %	0.0)	0.0~100.0	%
	12	아날로그 출력 2 모니터	AO2 Monitor	0.0)	0.0~1000.0	%

٦

전압 및 전류 아날로그 출력 설정 상세

코드 및 기능	설명					
	출력의 경우의	출력의 기준이 될 값을 선택합니다. 다음은 출력 형태가 전압으로 설정된 경우의 예입니다.				
	설정		기능			
	0	Frequency	운전 주파수를 기준으로 출력합니다. DRV-20(Max			
			Freq)에서 설정된 주파수에서 10V 가 출력됩니다.			
	1	Output Current	인버터 정격 전류의 150%에서 10V가 출력됩니다.			
OUT-01 AO1	2	Output Voltage	인버터 출력 전압을 기준으로 출력합니다. BAS-15			
			(Rated Volt)에 설정된 전압에서 10V 를 출력합니다.			
OUT-07 AO2			BAS-15 에서 0V 가 설정된 경우, 200V 급은 240V,			
Mode			400V 급은 480V 기준 10V 를 출력합니다.			
	3	DC Link Volt	인버터 DC 링크 전압을 기준으로 출력합니다.			
			200V 급 인버터는 410Vdc 일 때, 400V 급 인버터는			
			820Vdc 일 때 10V 를 출력합니다.			
	4	Ouput Power	출력 와트를 모니터합니다. 정격 출력의 150%가			
			최대 표시 전압(10V)입니다.			
	7	Target Freq	설정 주파수를 기준으로 출력합니다. DRV-20 최대			
			주파수에서 10V 를 출력합니다.			

코드 및 기능	설명		
	8	Ramp Freq	가/감속 함수를 거친 주파수 기준으로 출력 합니다.
			실제 출력 주파수와 차이가 있을 수 있습니다.
			10V 를 출력합니다.
	9	PID Ref Value	PID 제어기의 지령값을 기준으로 출력합니다.
			100%일 때 약 10V를 출력합니다.
	10	PID Fdk Value	PID 제어기의 피드백 양을 기준으로 출력합니다.
			100%일 때 약 10V를 출력합니다.
	11	PID Output	PID 제어기의 출력 값을 기준으로 출력합니다.
			100%일 때 약 10V를 출력합니다.
	12	Constant	OUT-05(AO1 Const %) 값을 기준으로 출력합니다.
	13	EPID1 Output	External PID1 제어기의 출력값을 기준으로
			출력합니다. 100%일 때 약 10V 를 출력합니다.
	14	EPID Ref Val	External PID1 제어기의 지령 값을 기준으로
			출력합니다. 100%일 때 약 10V 를 출력합니다.
	15	EPID Fdb Val	External PID1 제어기의 피드백 양을 기준으로
			출력합니다. 100%일 때 약 10V 를 출력합니다.
	출력의	크기 및 오프셋	(Offset)을 조정할 수 있습니다. 출력 항목을
OUT-02 AO1	주파수	·(Frequency)로 선	택한 경우 다음과 같이 동작합니다.
Gain, OUT-03 AO1 Bias		<i>A0</i> 1 =	$= \frac{Frequency}{MaxFreq} \times A01 \ Gain + A01 \ Bias$
Dias	다음 _	그림은 OUT-02(A0	O1 Gain) 및 OUT-03(AO1 Bias) 값에 따라 아날로그
OUT-08 AO2	전압 클	출력(AO1)이 어떻	게 변화하는지 보여줍니다.Y축은 아날로그 출력
Gain, OUT-09 AO2	전압(0	~10V)이며, X 축은	은 출력하려는 항목의 % 값을 나타냅니다.
Bias	예를 들	들어, DRV-20 최디	l 주파수(Max Freq)가 60Hz 일 때, 현재 출력 주파수가
	30Hz (이면 아래 그림에	서의 X 축은 50%입니다.

Γ

응용 기능 사용하기

코드 및 기능	설명	설명			
		OUT-02	AO1 Gain		
		100.0%(공장 출하치)	80.0%		
	0.0% (공장출하치 OUT-03 AO1Bias	10V 8V 5V 0% 50% 80% 100%	8V 6.4V 4V 0% 50% 80% 100%		
	20.0%	10V 7V 2V 0% 50% 80% 100%	10V 8.4V 6V 2V 0% 50% 80% 100%		
OUT-04 AO1 Filter OUT-10 AO2 Filter	아날로그 출력의 필터 시정 수를 설정합니다.				
OUT-05 A01 Const % OUT-11 A02 Const %	아날로그 출력 항목(OUT-01 AO1/ OUT-07 AO2 Mode)을 12(Constant)로 설정하면 이 파라미터에 설정한 값(0~100%)에 따라 아날로그 전압이 출력됩니다.				
OUT-06 AO1 Monitor OUT-12 AO2 Monitor	아날로그 출력 깂 백분율(%)로 표시	출력됩니다. 아날로그 출력 값을 모니터합니다. 최대 출력 전압 10V 를 기준으로 백분율(%)로 표시합니다.			

٦

5.47.2 **아날로그 펄스 출력**

인버터 단자대의 TO(Pulse Output) 단자에서 출력 항목을 선택하고 펄스의 크기를 조정할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
	61 펄	펄스 출력 항목	TO Mode	0	Frequency	0~15	-
001	62	펄스 출력 게인	TO Gain	100	.0	-1000.0~1000.0	-

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
	63	펄스 출력 바이어스	TO Bias	1000.0	-100.0~100.0	-
64 펄스 출력 필터		TO Filter	5	0~10000	-	
	65	펄스 출력 상수 출력 2	TO Const %	0.0	0.0~100.0	%
	66	펄스 출력 모니터	TO Monitor	0.0	0~1000.0	%

아날로그 펄스 출력 설정 상세

ſ

LSELECTRIC 297

응용 기능

코드 및 기능	설명		
OUT-64 TO Filter			
OUT-65 TO	아날로그 출력 항목을 Constant 로 설정한 후, 이 파라미터에 설정한 값에		
Const %	따라 아날로그 펄스가 출력됩니다.		
OUT-66 TO Monitor	아날로그 출력 값을 모니터합니다. 최대 출력 펄스(32kHz)를 기준으로		
WORIDI	백분율(%)로 표시합니다.		

٦

참고

Г

0~20mA 를 출력으로 사용하는 경우 OUT-08 AO2 Gain, OUT-09 AO2 Bias 튜닝 방법

- 1 OUT-07(AO2 Mode)을 Constant 로 설정하며, OUT-11(AO2 Const %)은 0.0 %로 설정하십시오.
- 2 OUT-09(AO2 Bias)를 20.0%로 설정한 후, 전류 출력을 측정하여 4mA 가 출력되는지 확인하십시오.
 4mA 보다 작다면, 4mA 가 측정될 때까지 OUT-09(AO2 Bias)를 조금씩 높여줍니다.
 반대로, 4mA 보다 크다면, 4mA 가 측정될 때까지 OUT-09(AO2 Bias)를 조금씩 낮춰줍니다.
- 3 OUT-11 AO2 Const %를 100.0%로 설정하십시오.
- 4 OUT-08 AO2 Gain 을 80.0%로 설정한 후, 전류 출력을 측정하여 20mA 가 출력되는지 확인하십시오. 20mA 보다 작다면, 20mA 가 측정될 때까지 OUT-08(AO2 Gain)을 조금씩 높여줍니다. 반대로, 20mA 보다 크다면, 20mA 가 측정될 때까지 OUT-08(AO2 Gain)을 조금씩 낮춰줍니다.

각 코드에 대한 기능은 위에서 설명한 0~10V 전압 출력의 항목과 동일하며 출력 범위는 4~20mA 가 됩니다.

5.48 디지털 출력

5.48.1 다기능 출력 단자 및 릴레이 설정

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
	31	다기능 릴레이 1 항목	Relay 1	23	Trip	-	-
	32	다기능 릴레이 2 항목	Relay 2	14	Run		
	33	다기능 릴레이 3 항목	Relay 3	0	None		
34 OUT 35	다기능 릴레이 4 항목	Relay 4	0	None			
	35	다기능 릴레이 5 항목	Relay 5	0	None		
	36	다기능 출력 항목	Q1 define	0	None	-	-
	41	다기능 출력 모니터	DO Status	-		00~ 11	bit
57	57	검출 주파수	FDT Frequency	30.00		0.00~최대	Hz
	58	검출 주파수 폭	FDT Band	10.00		주파수	
IN	65~71	Px 단자 기능 설정	Px Define	18	Exchange	0~55	-

٦

다기능 출력 단자 및 릴레이 설정 상세

코드 및 기능	설명					
	릴레이	 릴레이(Relay 1~5) 출력 항목을 설정합니다.				
	설정		기능			
	0	None	아무 신호도 출력하지 않습니다.			
OUT-31~35	1	FDT-1	인버터의 출력 주파수가 사용자가 설정한 주파수에			
Relay1~5			도달하였는지를 검출합니다. 다음 조건을 만족할			
			때 신호를 출력합니다.			
			절대 값(설정 주파수-출력 주파수) < 검출 주파수			
			폭/2			

코드 및 기능	설명		
			검출 주파수 폭이 10Hz 인 경우 FDT-1 동작은
			다음과 같습니다.
			40Hz
			실정 <u>20Hz</u> 주파수 <u>40Hz</u>
			20Hz 35Hz
			<u>주파수 ISHz 2011</u>
			Q1 으저 기려
	2	FDT-2	<u> </u>
			지승지가 걸었던 구파구과 엄굴 구파구(FD) Frequency)가 갖고, 읽어 1 번 FDT-1 조거을 도시에
			마족학 때 신호륵 축렬한니다
			[적대 갓(춪력 주파수-건축 주파수) > 건축 주파수
			폭/21&IFDT-11
			검출 주파수 폭은 10Hz, 검출 주파수는 30Hz 로
			설정한 경우 FDT-2 출력은 다음과 같습니다.
			출력 20Hz <u>50Hz</u>
			주파수
			25Hz
	-		운전 지령
	3	FDT-3	운전 주파수가 다음 조건일 때 신호를 출력합니다.
			절대 값(출력 주파수-검출 주파수) < 검출 주파수
			폭/2
			검출 주파수 폭은 10Hz, 검출 주파수는 30Hz 로
			설정한 경우 FDT-3 출력은 다음과 같습니다.
			35Hz
			주파수
			Q1
			운전 지령

Γ

코드 및 기능	설명		
	4	FDT-4	가속과 감속 시 조건을 별도로 설정하여 신호를 출력할 수 있습니다. • 가속 시: 운전 주파수≧검출 주파수 • 감속 시: 운전 주파수>(검출 주파수-검출 주파수 폭/2) 검출 주파수 폭은 10Hz, 검출 주파수는 30Hz 로 설정한 경우 FDT-4 출력은 다음과 같습니다. 30Hz 주파수 Q1 운전 지령
	5	Over Load (모터 과부하)	모터에 과부하가 걸린 상태가 되면 신호를 출력합니다.
	6	IOL (인버터 과부하)	인버터 과부하에 의해 반비례 시 특성 보호 기능으로 고장 상태가 발생하면 신호를 출력합니다.
	7	Under Load (경부하 경보)	경부하 경보 시 신호를 출력합니다.
	8	Fan Warning (팬 경보)	팬 경보 시 신호를 출력합니다.
	9	Stall (모터 스톨)	모터 과부하에 의해 스톨 상태가 되면 신호를 출력합니다.
	10	Over Voltage (과전압 트립)	인버터 DC 링크 전압이 보호 동작 전압 이상으로 상승하게 되면 신호를 출력합니다.
	11	Low Voltage (저전압 트립)	인버터 DC 링크 전압이 저전압 보호 동작 레벨 이하로 내려가게 되면 신호를 출력합니다.
	12	Over Heat (인버터 과열)	인버터가 과열되면 신호를 출력합니다.
	13	Lost Command	단자대의 아날로그 입력 단자 및 RS-485 통신 지령 상실 시 출력합니다. 통신 옵션 및 확장 I/O

٦

코드 및 기능	설명		
		(지령 상실)	옵션 카드가 장착되어 있으며, 옵션 내의 아날로그 입력 및 통신 지령 상실 시에도 신호를 출력합니다.
	14	RUN (운전 중)	운전 지령이 입력되어 인버터에서 전압이 출력되고 있을 때 출력합니다. 직류 제동 중에는 신호를 출력하지 않습니다.
			<u>주파수</u> <u>Q1</u> 운전 지령
	15	Stop (정지 중)	운전 지령이 오프(Off) 상태이고, 인버터 출력 전압이 없는 상태에서 신호를 출력합니다.
	16	Steady (정속 운전 중)	정속 운전 중인 경우 신호를 출력합니다.
	17	Inverter Line (인버터 운전 중)	인버터 운전 중에 신호를 출력합니다.
	18	Comm Line (상용 전원 운전 중)	다기능 입력 단자(Exchange)가 입력되면 신호를 출력합니다. 자세한 사항은 <u>239 페이지, 5.31 상용</u> 전원 전환 운전을 참조하십시오.
	19	Speed Search (속도 써치 동작 중)	인버터가 속도 써치 기능으로 동작하는 동안 신호를 출력합니다. 자세한 사항은 <u>227 페이지, 5.27 속도 써치(Speed</u> <u>Search) 운전</u> 을 참조하십시오.
	20	Ready (운전 지령 대기 중)	인버터가 정상적으로 동작 중이며 외부로부터 운전 지령을 입력받기 위하여 운전 가능한 대기 상태에 있을 때 신호를 출력합니다.
	21	MMC(멀티 모터 제어중)	멀티 모터 제어(Multi-Motor Control)기능으로 사용됩니다. 릴레이 출력과 다기능 출력을 MMC 로 설정하고 AP1-40~AP1-92 를 설정하여 멀티 모터 제어 기능에 필요한 동작을 합니다.

Γ

코드 및 기능	설명		
	22	Timer Out	다기능 단자대 입력을 이용하여 일정 시간 후에 접점 출력을 동작시킬 수 있는 기능입니다. 자세한 사항은 <u>254 페이지, 5.43 타이머 설정을</u> 참조하세요.
	23	Trip	트립이 발생하면 신호를 출력합니다. 자세한 사항은 <u>291 페이지, 5.45 다기능 출력</u> <u>온/오프(On/Off) 제어</u> 를 참조하십시오.
	25	DB Warn %ED	329 페이지, 제동 저항 사용률 설정을 참조하십시오.
	26	On/Off Control	아날로그 입력 값을 기준으로 신호를 출력합니다. 자세한 사항은 <u>291 페이지, 5.45 다기능 출력</u> <u>온/오프(On/Off) 제어</u> 를 참조하십시오.
	27	Fire Mode	Fire Mode 동작 중 일 때 신호를 출력합니다.
	28	Pipe Broken	Pipe Broken 이 발생 시 신호를 출력합니다.
	29	Damper Err	Damper Open 신호가 들어오지 않을시 신호를 출력합니다. 자세한 사항은 <u>181 페이지 5.10 댐퍼</u> 운전을 참조하세요.
	30	Lubrication	Lubrication 기능이 동작시 신호를 출력합니다.
	31	PumpClean Sel	PumpCelaning 기능이 동작시 신호를 출력합니다.
	32	LDT Trip	LDT Trip 이 발생시 신호를 출력합니다.
	33	Damper Control	IN-65~71 다기능 입력에 Damper Open 신호가 설정되어 있을 경우 운전 지령이 On 되면 신호를 출력합니다.
	34	CAP.Warning	PRT-85 의 값이 PRT-86 번 값보다 낮은 경우(CAP 수명 진단이 정상적으로 동작하지 않은 경우) 신호를 출력합니다.
	35	Fan Exchange	Fan 교체 수명에 도달시 신호를 출력합니다.
	36	AUTO State	AUTO 상태일 때 신호를 출력합니다.
	37	HAND State	HAND 운전 상태일 때 신호를 출력합니다.
	38	TO	Pulse 출력일 때 신호를 출력합니다.

٦

코드 및 기능	설명						
	39	Except Date	Exception Day 일정을 수행할 때 출력합니다.				
	40	KEB Operating	KEB 동작중 일 때 신호를 출력합니다.				
	41	BrokenBelt BrokenBelt 동작중 일 때 신호를 출력합니다					
OUT-36 Q1 Define	단자대의 다기능 출력 단자(Q1)에 대한 출력 항목을 선택합니다. Q1 은						
	Open Collector TR 출력입니다.						
OUT-41 DO Status	DO 의 On/Off 상태를 비트별로 확인 가능합니다.						

① 주의

Г

- FDT-1, FDT-2 기능은 인버터 설정 주파수와 관련되어 있습니다. AUTO 모드에서 운전하고 있는 중 OFF 키에 의해 정지시 인버터는 OFF 상태가 되며 이 때 인버터 설정 주파수가 AUTO 모드에서 의 설정 주파수와 다르기 때문에 FDT-1, FDT-2 기능 동작이 달라질 수있습니다.
- 다기능 출력 단자에 Under load, LDT 등의 감시 기능의 신호가 설정되어 있는 경우 설정되어 있는 기능의 기능해제 조건 이외의 경우에는 연속적으로 신호를 출력합니다.

5.48.2 다기능 출력 단자 및 릴레이로 트립 출력

다기능 출력 단자(Q1) 및 릴레이(Relay 1)를 이용하면 인버터의 트립 상태를 출력할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
OUT	30	트립 출력 항목	Trip Out Mode	010		-	bit
	31	다기능 릴레이 1 항목	Relay 1	23	Trip	-	-
그룹	코드	명칭	LCD 표시	설정	! 값	설정 범위	단위
----	----	--------------	----------------	------	------	-------------	-----
	32	다기능 릴레이 2 항목	Relay 2	14	Run	-	-
	33	다기능 릴레이 3 항목	Relay 3	0	none	-	
	34	다기능 릴레이 4 항목	Relay 4	0	none	-	
	35	다기능 릴레이 5 항목	Relay 5	0	none	-	
	36	다기능 출력 1 항목	Q1 Define	0	none	-	-
	53	트립 출력 온 딜레이	TripOut OnDly	0.00)	0.00~100.00	sec
	54	트립 출력 오프 딜레이	TripOut OffDly	0.00		0.00~100.00	sec

٦

다기능 출력 단자 및 릴레이로 트립 설정 상세

코드 및 기능	설명					
	트립 출력 선택에 따라 릴레이가 동작합니다.					
	항목 비트 온(0			n)	비트 오프(Off)	
	LCD 로	LCD 로더				
	트립 출력으로 사용할 단자 및 릴레이를 선택한 후 OUT-31, 33 에서					
	29(Trip N	lode)를	· 선택합니	다. 인버터에서 또	트립이 발생하면 해당되는	
	단자 및	릴레이	가 동작합니	니다. 트립의 종류	루에 따라 단자 및 릴레이의	
OUT-30 Trip Out Mode	동작 여부를 다음과 같이 설정할 수 있습니다.					
	설정			기능		
	비트 3	비트	2 비트 1			
			~	저전압 트립 빌	'생 시 동작	
		~		저전압 트립을	제외한 다른 트립이	
				발생하면 동작		
	✓			자동 재기동(PF	RT-08~09)에 실패한 경우	
				동작		
OUT-31~35 Relay1~5	릴레이(R	elay 1-	~5) 출력 힝	목을 설정합니다	ł.	
OUT-36 Q1 Define	단자대의	다기능	능 출력 단기	다(Q1)에 대한 출	력 항목을 선택합니다. Q1 은	
	Open Co	llector ⁻	TR 출력입니	니다.		

5.48.3 다기능 출력 단자 지연 시간 설정

Г

온(On) 지연 시간 및 오프(Off) 지연 시간을 별도로 설정하여 단자대의 출력 단자 및 릴레이의 동작 시간을 조정할 수 있습니다. OUT-50~51 에서 설정한 지연 시간은 다기능 출력 기능이 트립 모드인 경우를 제외하고는 다기능 출력 단자(Q1)와 릴레이에 모두 적용됩니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
OUT	50	다기능 출력 온 딜레이	DO On Delay	0.00	0.00~ 100.00	sec
	51	다기능 출력 오프 딜레이	DO Off Delay	0.00	0.00~ 100.00	sec
	52	다기능 출력 접점 선택	DO NC/NO Sel	000000*	00~11	bit

*오른쪽부터 다기능 출력단자 1 번에 해당하며 왼쪽 방향으로 순번이 증가함.

출력 단자 지연 시간 설정 및 접점 종류 설정 상세

코드 및 기능	설명					
OUT-50 DO On	릴레이 동작 신호(OUT 31~35, 36 에서 설정한 동작)가 발생시 OUT-50 에					
Delay	설정된 시간	이후에 릴레이가 On 되거나 더	·기능 출력이 동작합니다.			
OUT-51 DO Off	릴레이 혹은	다기능 출력이 초기화 될 때(C	OFF 신호 발생시) OUT-54 에			
Delay	설정된 시간 이후에 릴레이 OFF 또는 다기능 출력이 OFF 됩니다.					
	릴레이 및 다기능 출력 단자의 접점 종류를 선택합니다. 해당하는					
	비트를 0으로 설정하면 A 접점(Normal Open)으로 동작하며, 1 로					
	설정하면 B 접	하면 B 접점(Normal Close)으로 동작합니다. 오른쪽 비트부터 Relay				
OUT-52 DO NC/NO	1~5, Q1 입니다.					
	항목	B 접점(Normal close)	A 접점(Normal open)			
	LCD 로더					

5.49 운전 상태 모니터

LCD 로더에서 인버터의 운전 상태를 모니터할 수 있습니다. 컨피그 모드(CNF)에서 모니터할 항목을 선택하면 최대 4개 항목까지 동시에 모니터할 수 있습니다. LCD 로더의 모니터 모드에서는 3가지 항목을 동시에 볼 수 있으며, 상태 표시창에 표시될 항목은 1가지만 선택할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
CNF	20	상태 표시창 표시 항목	AnyTime Para	0	Frequency	-	-
	21	모니터 모드 표시 항목 1	Monitor Line-1	0	Frequency	-	Hz
	22	모니터 모드 표시 항목 2	Monitor Line-2	2	Output Current	-	А
	23	모니터 모드 표시 항목 3	Monitor Line-3	3	Output Voltage	-	V
	24	모니터 모드 초기화	Mon Mode Init	0	No	-	-

운전 상태 모니터 설정 상세

코드 및 기능	설명	
	LCD 로더 오른쪽	상단 상태 표시창에 표시할 항목을 선택합니다.
CNF-20 AnyTime	아래 항목 중에서	표시하려는 정보에 맞는 설정 값을 선택하십시오.
Para	CNF-20~23 의 설	정 항목은 동일합니다.
	설정	기능

코드 및 기능	설명		
	0	Frequenc	정지 중에는 설정 주파수를 표시하고 운전 중에는
		у	현재 출력하고 있는 운전 주파수를 Hz 단위로
			표시합니다.
	1	Speed	0 번과 동일하게 동작하며, 운전 상태를 Rpm
			단위로 표시합니다.
	2	Output Current	출력 전류의 크기를 표시합니다.
	3	Output Voltage	출력 전압을 표시합니다.
	4	Output Power	출력 전력을 표시합니다.
	5	WHour Counter	인버터 전력 소비량을 표시합니다.
	6	DCLink Voltage	인버터 내부의 DC 링크 전압을 표시합니다.
	7	DI Status	단자대에 있는 입력 단자의 상태를 표시합니다.
			오른쪽부터 P1~P8까지 표시합니다.
	8	DO Status	단자대의 출력 단자 상태를 표시합니다.
			오른쪽부터 Relay1~5, Q1 입니다.
	9	V1 Monitor[\/	단자대의 전압 입력 단자 V1 입력 값을 전압
]	단위로 표시합니다.
	10	V1 Monitor	단자대의 전압 입력 단자 V1 입력 값을 백분율로
		[%]	표시합니다10~0~+10V 가 입력되면, -100~0~100%
			를 표시합니다.
	13	V2 Monitor	단자대의 전압 입력 단자 V2 입력 값을 전압
		[V]	단위로 표시합니다.
	14	V2 Monitor	단자대의 전압 입력 단자 V2 입력 값을 백분율로
		[%]	표시합니다.
	15	l2 Monitor	단자대의 전류 입력 단자 I2 입력 값을 전류
		[mA]	단위로 표시합니다.
	16	l2 Monitor	단자대의 전류 입력 단자 I2 입력 값을 백분율로
		[%]	표시합니다.
	17	PID Output	PID 제어기의 출력을 표시합니다.

Γ

코드 및 기능	설명			
	18	PID Ref	PID 제어기의 레퍼런스 값 크기를 표시하며, PID	
		Value	레퍼런스 값을 설정할 수 있습니다.	
	19	PID Fdb Value	PID 제어기의 피드백 양을 표시합니다.	
	20 EPID1 Mode 21 EPID1 Output		External PID 1 의 Mode 를 표시합니다.	
			External PID 1 의 출력값을 표시합니다.	
	23	EPID1 Ref Val	External PID 1 의 레퍼런스 값을 표시합니다	
	모니티	너 모드에서	표시할 항목을 선택합니다. 모니터 모드는	
CNF-21~23 Monitor	인버터에 전원을 공급하면 제일 먼저 표시되는 모드입니다. Monitor			
Line-x	 Line-1~ Monitor Line- 3 까지 모두 3 가지 항목을 동시에 표시할 수			
	있습니다.			
CNF-24 Mon Mode	1(Yes)	을 선택하던	면, CNF-20~23 이 초기화됩니다.	

참고

인버터 전력 소비량 관련 사항

전압과 전류를 이용해서 계산된 값을 사용하며, 1 초마다 계산된 전력을 기준으로 누적합니다. CNF-62 WH Count Reset 값을 1(Yes)로 설정하면 사용자가 전력량을 초기화할 수 있습니다. 전력 소비량을 표시하는 방법은 아래와 같습니다.

- 1,000kW 미만: 단위가 kW 이고, 999.9kW 형식으로 표시됩니다.
- 1~99MW: 단위는 MW 이고, 99.99MWh 형식으로 표시됩니다.
- 100~999MW: 단위는 MW 이고, 999.9MWh 형식으로 표시됩니다.
- 1,000MW 이상: 단위는 MW 이고, 9,999MWh 형식으로 표시되며 65,535MW 까지 표시할 수 있습니다(65,535MW 를 초과하면 0으로 초기화되고, 단위는 다시 KW 가 되며 999.9 kW 형식으로 표시됩니다).

5.50 운전 시간 모니터

인버터의 운전 시간 및 팬 가동 시간 등을 모니터할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값		설정범위	단위
CNF	70	인버터 동작 누적 시간	On-time	0/00/00	00:00	-	min
	71	인버터 운전 누적 시간	Run-time	0/00/00	00:00	-	min
	72	인버터 운전 누적 시간 초기화	Time Reset	0	No	0~1	-
	74	냉각 팬 운전 누적 시간	Fan time	0/00/00	00:00	-	min
	75	냉각 팬 운전 누적 시간 초기화	Fan Time Reset	0	No	0~1	-

운전 시간 모니터 설정 상세

Г

코드 및 기능	설명
	인버터에 전원이 공급되면 시간을 누적 표시합니다.
CNF-70 On-ume	정보는 [년/월/일 시: 분(0/00/00 00: 00)] 형식으로 표시됩니다.
CNE 71 Due time	운전 지령이 입력되어 인버터에서 전압이 출력된 시간을 누적 표시합니다.
CINF-71 RUN-time	정보는 [년/월/일 시: 분(0/00/00 00: 00)] 형식으로 표시됩니다.
CNF-72 Time	1(Yes)로 설정하면 전원 공급 누적 시간(On-time)과 운전 누적 시간(Run-
Reset	time)이 모두 삭제되며 0/00/00 00:00 으로 표시됩니다.
CNE-74 Eap time	인버터 냉각 팬의 동작 시간을 누적 표시합니다. 정보는 [년/월/일 시:
CINF-74 Fall lime	분(0/00/00 00: 00)] 형식으로 표시됩니다.
CNF-75	1(Yes)로 설정하면 냉각 팬 동작 누적 시간(On-time)과 운전 누적 시간(Run-
Fan Time Reset	time)이 모두 삭제되며 0/00/00 00:00 으로 표시됩니다.

5.51 직렬 통신 재기동 기능(PowerOn Resume)

직렬 통신(Serial Communication[BAC net, LonWorks, Modbus RTU])을 사용하여 운전 지령을 주는 경우 순시 정전 후 복전 시에 순시 정전 이전의 운전 지령을 수행합니다.

그룹	코드	명칭	LCD 표시	설정	값	설정범위	단위
СОМ	96	통신 운전 자동 재시동	PowerOn Resume	0	No	0~1	-

① 주의

- COM-96 PowerOn Resume 기능이 YES 로 되어 있어도 순시 정전 후 정상적인 통신이 이루어 지지 않을 시에는 운전을 하지 않습니다.
- Power-on Run 기능은 별도로 동작합니다 (Power-on Run 기능이 Yes 되어 있고 Power On Resume 기능이 Yes 되어 있을 시 전원이 Off 된 후에 On 되면 Power-on Run 기능에 설정된 시간만큼 유지된 후에 Power On Resume 기능에 따라 정전 이전의 통신 지령에 의해 인버터가 운전하고 있었다면 복전 후 인버터가 운전하게 됩니다).

5.52 Multi key 를 이용하여 현재날짜/시간/요일 표기

현재 날짜, 시간 및 요일은 키패드의 Multi 키를 사용하여 모니터링 화면에 표시됩니다.

그룹	코드	명칭	LCD 표시	설정 값		설정범위	단위
CNF	42	Multi key 아이템	Multi key sel	2	Now Time	0–2	-

현재 날짜는 [AP3-01 Now Date]이고, 현재 시간은 [AP3-02 Now Time]이며, 현재 날짜는 [AP3-03 Now Weekday]에 설정된 매개 변수 값입니다.

{2:Now Time}으로 [CNF-42 Multi-Key Sel]을 선택하면 키패드 상단에 (고) 이미지가 표시됩니다. 키패드에서 <MULTI> 키를 누르면 이미지 상단 (고)이 키패드 상단에 표시되고 다음과 같이 모니터 표시 모드가 모니터 값으로 자동 변경됩니다.(CNF 그룹의 모니터 라인 1/2/3의 키패드 파라미터가 변경되고 모니터링 화면의 디스플레이 만 변경됨)

Line1 : Now Date (= AP3-01 의 값)

Line2 : Now Time (= AP3-02 의 값)

Г

Line3 : Now Weekday (= AP3-03 값)

키패드에서 <MULTI> 키를 다시 누르면 키패드 상단에 (王) 이미지가 표시되고 모니터링 표시 값이 사용자가 이미 설정 한 상태로 변경됩니다.

[CNF-21 / 22 / 23 Monitor Line-1 / 2 / 3]에서 {26 : Now Date}, {27 : Now Time} 및 {28 : Now Weekday}를 개별적으로 설정할 수 있습니다.

[CNF-20 Anytime Money]는 {26 : Now Date} 또는 {28 : Now Weekday}로 설정할 수 없습니다.

6 보호 기능 사용하기

이 장에서는 H100 시리즈에서 제공하는 보호 기능을 설명합니다. 보호 기능은 모터의 과열 및 손상을 방지하기 위한 기능과 인버터의 자체 보호 및 오동작 방지를 위한 기능이 있습니다.

6.1 모터 보호

6.1.1 모터 과열 방지(ETH)

별도의 온도 센서 없이도 인버터 출력 전류를 이용하여 모터의 온도 상승을 자동으로 예측하고, 모터의 발열 특성에 맞게 보호 동작을 수행합니다.

그룹	코드	명칭	LCD 표시	설정 값		설정 범위	단위
PRT	40	모터 과열 방지 트립 선택	ETH Trip Sel	0	None	0~2	-
	41	모터 냉각 팬 종류 Motor Cooling 0		0	Self-cool	-	-
	42	모터 과열 방지 1분 정격	ETH 1min	120		100~150	%
	43	모터 과열 방지 연속 정격	ETH Cont	100		50~150	%

모터 과열 방지(ETH) 설정 상세

코드 및 기능	설명						
	모터 있습	과열 방지(ET 니다. LCD 로디	ETH) 트립 발생 시 인버터 동작을 선택할 수 로더에는 'E-Thermal'로 표시됩니다.				
PRT-40 ETH Trip	설경	d d	기능				
Sei	0	None	모터 과열 방지(ETH) 기능을 사용하지 않습니다.				
	1	Free-Run	인버터 출력을 차단하여 모터가 프리 런합니다.				
	2	Dec	모터를 감속 정지시킵니다.				
PRT-41 Motor Cooling	모터에 부착된 냉각 팬의 구동 방식을 선택합니다.						

6.1.2 모터 과열 센서 입력

모터에 부착되어 있는 과열 방지 온도 센서(PT 100,PTC)등을 인버터 단자대의 아날로그 입력 단자에 연결하여 모터 과열 시 보호 기능이 동작하도록 합니다.

٦

그룹	코드	명칭	LCD 표시	설정	값	설정범위	단위
PRT	34	모터 과열 검출 센서 검출 후 동작 선택	Thermal-T Sel	0	None	0~1	-
	35	모터 과열 검출 센서 입력 선택	Thermal In Src	0	Thermal In	0~1	
	36	모터 과열 검출 센서 고장 레벨	Thermal-T Lev	50.0		0.0~100.0	%
	37	모터 과열 검출 센서 고장 영역	Thermal-T Area	0	Low	0~1	
OUT	07	아날로그 출력 2 항목	AO2 Mode	14	Constant	0~18	
	08	아날로그 출력 2 게인	AO2 Gain	100		0~100	%

모터 과열 센서 입력 설정 상세

코드 및 기능	설명						
	모터	모터 과열시 인버터 운전 상태를 설정합니다.					
	설정	ΞO	기능				
PRT-34	0	None	모터 과열 감지 시 동작을 하지 않습니다.				
Thermal-T Sel	1	Free-Run	모터 과열이 발생하면 인버터 출력을 차단하고,				
	_						
	3 Dec 모터 과열이 발생하면 감속 성시합니나.						
	인버터 단자대의 전압(V1)이나 전류(I2)입력 단자에 모터 과열 센서						
	연결	시 단자의 종류	를 선택 합니다.				
PRT-35 Thormal In Src	설정	ΞO	기능				
	0	Thermal In	모터 과열 센서 연결을 단자대 V1으로 설정합니다				
	1	V2	모터 과열 센서 연결을 단자대 I2 로 설정합니다.				
PRT-36	모터	과열 검출 센서	너 고장 레벨을 설정합니다.				

코드 및 기능	설명				
Thermal-T Lev					
	설경	元 〇	기능		
PRT-37 Thermal-T Area	0 Low	Low	모터 과열 센서 입력이 PRT-36 보다 작으면 동작 합니다		
	1	High	모터 과열 센서 입력이 PRT-36 보다 크면 동작 합니다		
OUT-07 AO2 Mode, OUT-08 AO2 Gain	아날로그 출력 단자를 이용하여 일정한 전류를 온도센서에 공급하여 혹은 V1 단자대로 입력을 받을 시 사용하게 됩니다.				

PTC 등 온도 센서를 아날로그 입력 단자에 이용하여 사용하는 경우)

아날로그 전류 출력 (AO2)단자를 이용하여 일정한 전류를 온도센서에 공급하여 아래 그림과 같이 I2 단자대를 이용하는 경우에는 I/O 보드에 있는 스위치가 V2 표시에 위치해 있어야 하고, V1 단자대를 이용하는 경우에는 T1 로 스위치가 위치해 있어야 합니다.

- V1 단자(T1)를 이용하는 경우: PRT-35(Thermal In Src)을 0: Thermal In 설정후 Analog1 입력 선택 스위치(SW3)를 T1 상태로 두어야 한다.

※SW3 V1 설정시 동작하지 않음.

Г

- I2 단자(V2) 를 설정하는 경우: PRT-35(Thermal In Src)을 1: V2 설정 후 Analog2 입력선택 스위치(SW4)를 V2 상태로 두어야한다.

※SW412 설정시 동작하지 않음.

AO2 단자를 통해 일정한 전류를 흐르게 하여 PTC 의 저항값 변화에 따라 전압으로 환산하여 측정합니다. 모터 과열 신호 입력시 내부 지연시간을 가지고 Trip 을 발생 시킵니다. Trip 지연시간은 조건 해제시 클리어 되지 않고 시간이 지남에 따라서 감소합니다.

6.1.3 과부하 경보 및 트립 처리

모터 정격 전류를 기준으로 모터에 과부하가 공급된 경우 경보 신호를 발생하거나 트립 처리합니다. 이 때, 경보 및 트립 처리에 대한 전류의 크기를 각각 설정할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	값	설정범위	단위
	17	과부하 경보 선택	OL Warn Select	1	Yes	0~1	-
	18	과부하 경보 레벨	OL Warn Level	110		30~150	%
	19	과부하 경보 시간	OL Warn Time	10.0		0~30	sec
PRI	20	과부하 트립 시 동작	OL Trip Select	1	Free-Run	-	-
	21	과부하 트립 레벨	OL Trip Level	120		30~150	%
	22	과부하 트립 시간	OL Trip Time	60.0		0~60.0	sec
OUT	31~35	다기능 릴레이 1~5 항목	Relay 1~5	F	Overland		
	36	다기능 출력 1 항목	Q1 Define	Э	Over Load	-	-

과부하 경보 및 트립 처리 설정 상세

코드 및 기능	설명						
PRT-17 OL Warn Select	과부 릴레 선택	과부하 경보 레벨의 부하가 공급된 경우 단자대 다기능 출력 단자 및 릴레이로 신호를 출력합니다. 1(Yes)로 선택한 경우 동작하며 0(No)을 선택하면 동작하지 않습니다.					
PRT-18 OL Warn Level, PRT-19 OL Warn Time	모터 크고 출력 릴레 출력	1터에 흐르는 전류가 과부하 경보 레벨(OL Warn Level) 설정 값보다 1고, 과부하 경보 시간(OL Warn Time)을 초과하여 흐를 경우 다기능 5력(Relay 1, Q1)으로 경보 신호를 출력합니다. 다기능 출력 단자 및 실레이는 OUT-31, OUT-33 코드를 5(Over Load)로 설정하면 신호를 5력합니다. 이 때, 인버터의 출력은 차단되지 않습니다.					
	과부	하 트립이 발상	했을 때 인버터의 동작을 선택합니다.				
	설정	3	기능				
PRT-20	0	None	과부하 트립 보호 동작을 하지 않습니다.				
OL Trip Select	1	Free-Run	과부하 트립 상태가 발생하면 인버터 출력을 차단하고, 모터는 관성에 의해 프리 런합니다.				
	3	Dec	트립이 발생하면 감속 정지합니다.				
PRT-21 OL Trip Level, PRT-22 OL Trip Time	모터 값보 17 [_] 정지	고급하 혼양하는 음악 양차급역적. 모터에 흐르는 전류의 크기가 과부하 트립 레벨(OL Trip Level) 설정 값보다 크고, 과부하 트립 시간(OL Trip Time)을 초과하여 흐를 경우 PRT- 17 코드에서 설정한 방법에 따라 인버터 출력을 차단하거나 감속					
	PI	RT-19	PRT-19				
<u>전류</u> 다기능출력 O <u>ver Load(5)</u>			PRT-18				

참고

Г

과부하 경보는 과부하 트립 전에 과부하 위험을 미리 알려주는 기능입니다. 과부하 경보 레벨(OL Warm Level)과 과부하 경보 시간(OL Warn Time)을 과부하 트립 레벨(OL Trip Level)과 과부하 트립 시간(OL Trip Time) 보다 크게 설정하면 과부하 트립 발생 시에 과부하 경보 신호가 출력되지 않을 수 있습니다. 보호기능

6.1.4 스톨 방지 기능 및 플럭스 제동

스톨 방지 기능은 과부하에 의한 모터 스톨(Stall)을 방지하기 위한 기능입니다. 스톨 방지 기능을 사용하면 부하의 크기에 맞추어 인버터의 출력 주파수가 자동으로 조절됩니다. 과부하에 의해 모터 스톨이 발생하면 과전류가 흘러 모터가 과열되거나 파손되고, 모터 부하 측의 시스템 공정이 멈출 수 있습니다. 이러한 경우 플럭스 제동(Flux Braking)을 사용하여 제동 저항 없이 최적 감속 시간으로 감속합니다.. 감속 시간을 짧게 설정하면 모터로부터의 회생 에너지로 인해 과전압 트립이 발생할 수 있습니다. 이 경우 플럭스 제동을 사용하면 회생 에너지를 모터에서 소비하도록 제어하므로 과전압 트립 없이 이상적인 감속 시간을 얻을 수 있습니다.

그룹	코드	명칭	LCD 표시	설	정 값	설정 범위		단위
	50	스톨 방지 동작 및 플럭스 브레이킹	Stall Prevent	01	00	-		bit
	51	스톨 주파수 1	Stall Freq 1	60.00		시작 주파수~ Stall Freq 1		Hz
	52	스톨 레벨 1	Stall Level 1	13	0	30~150		%
PRT	53	스톨 주파수 2	Stall Freq 2	60.00		Stall Freq 1~	Stall Freq 3	Hz
	54	스톨 레벨 2	Stall Level 2	130		30~150		%
	55	스톨 주파수 3	Stall Freq 3	60	.00	Stall Freq 2~	Stall Freq 4	Hz
	56	스톨 레벨 3	Stall Level 3	130		30~150		%
	57	스톨 주파수 4	Stall Freq 4	60.00		Stall Freq 3~ 최대 주파수		Hz
	58	스톨 레벨 4	Stall Level 4	13	0	30~150		%
	50	플럭스 브레이킹	Elux Broko ko	0		0.75-90kW	0–150	
	59	게인	гих втаке кр	0	-	110-500kW	0–10	-
	31-	다기능 릴레이	Polov 1					
OUT	35	1 -5 항목	INERAY I	9	Stall	-		-
	36	다기능 출력 1 항목	Q1 Define					

스톨 방지 기능 및 플럭스 제동 설정 상세

Γ

코드 및 기능	설명							
	가/감속 스위치의 것이며,	및 정속 - 이 점(Dot) 아래에 있	운전 표시 니으민	시 스· 가 위(<u>변</u> 오프	톨 방지 동 에 있으면 (Off)로 설	등작을 해당 정된 -	별도로 선택할 수 있습니다. 비트가 온(On)으로 설정된 것입니다.	
	항목	ł	비트	온(On)		비트 오프(Off)	
	LCD 토	르더						
	설정			기능		기능		
	비트 4	비트4 비트3 비		트 2	비트 1			
					✓	가속	운전 중 스톨 방지	
	✓				정속	운전 중 스톨 방지		
		✓			감속	감속 운전 중 스톨 방지		
	✓					감속	시 플럭스 제동	
PRT-50 Stall Prevent								
	설정			기능		1 * 7	지구의 구기가 내지던 모든	ЦЦ ЦЦ
	0001	가속 중 스톨 방 ⁷	۲	가속 레벨(중지 이상 Freq) 전류의 다시	중 인버트 PRT-52,5 하고 감속 을 계속 유 까지 감속 의 크기가 가속합니	줄력 4, 56, 합니다 - 지하 - 합니다 감속 ^さ 다.	선류의 크기가 설성된 스톨 58) 보다 크면 가속을 ·. 전류의 크기가 스톨 레벨 면 시작 주파수(DRV-19 Start 나. 스톨 방지 기능 동작 중 하여 설정 레벨 이하가 되면	키는
	0010	정속 중 스톨 방기	ק	가속 중에 주파 ⁼ 전류 가속합	가속 중 스톨 방지 기능과 마찬가지로 정속 운전 중에 설정된 스톨 레벨 이상의 전류가 흐르면 출력 주파수를 자동으로 낮추어 감속합니다. 부하 전류가 감소하여 설정 레벨 이하가 되면 다시 가속합니다.			
	0100	감속 중 스톨 방지		감속 중에 과전압 트립이 발생하지 않도록 DC 링크의 전압이 일정 수준 이하가 되도록 유지하며				

참고

ſ

스톨 방지와 플럭스 제동은 감속 중에만 동작합니다. 관성이 크지만 감속 시간이 짧은 부하에서 과전압 트립을 피해 최단/최적 감속 성능을 얻으려면 PRT-50 Stall Prevent 의 3 번째, 4 번째 비트를 모두 켜십시오(On). 단, 모터가 과열되거나 파손될 수 있으므로, 빈번한 감속이 이루어지는 부하에서는 이 기능을 사용하지 마십시오.

① 주의

- 감속 중 스톨 방지 기능을 설정하면 부하에 따라 감속 시간이 설정 시간보다 길어질 수 있으므로 주의하십시오. 가속 중에 스톨 방지 기능이 동작하면 가속을 중지하므로 실제 가속 시간이 설정된 가속 시간보다 증가합니다.
- 모터 기동 시에는 다른 스톨 설정 레벨 값과 상관 없이 스톨 레벨 1 에 의해 스톨 방지 기능의 동작 여부가 결정됩니다.
- 입력 전압이 공칭전압을 초과하는 경우 감속 중 스톨이 정상적으로 동작하지 않을 수 있습니다.

6.2 인버터 회로 및 시퀀스 보호 기능

6.2.1 **입출력 결상 보호**

입력 전원에 결상이 발생하면 인버터 입력 측에 과전류가 흐르게 되므로, 이를 방지하기 위해 입력 결상 보호 기능을 사용합니다. 또한, 모터와 인버터 출력과의 연결에 결상이 발생하면 토크 부족에 의해 모터 스톨이 발생할 수 있으므로 출력 결상 보호 기능을 사용합니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
PRT	05	입출력 결상 보호	Phase Loss Chk	Loss Chk 00		bit
	06	입력 결상 전압 밴드	IPO V Band	40	1~100V	V

입출력 결상 보호 설정 상세

코드 및 기능	설명					
	입력 및 출력 결 표시가 위에 있 있으면 오프(Off	렬상 으딘)로	을 각각 선택할 수 변 해당 비트가 온(설정된 것입니다.	· 있 On	l습니다. 스위치의 점(Dot))으로 설정된 것이며, 아래에	
	항목	비트 온(On)			비트 오프(Off)	
PRT-05 Phase Loss Chk PRT-06 IPO V	LCD 로더					
Band						
	설정			기능		
	비트 2		비트 1			
			✓	출	력 결상 보호	
	\checkmark			입	력 결상 보호	

6.2.2 **외부 트립 신호 처리**

Γ

다기능 입력 단자 기능 중 4 번 외부 트립(External Trip)을 이용하면 시스템 이상이 발생한 경우 인버터 운전을 정지할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	값	설정범위	단위
	65~71 Px 단자 기능 설정		Px Define (Px: P1~P7)	4	External Trip	0~55	-
IN	87	다기능 입력 접점 선택	DI NC/NO Sel			-	bit

외부 트립 신호 처리 설정 상세

코드 및 기능	설명									
IN-87 DI NC/NO Sel	입력 접 아래에 1[B 접점 다음과	접의 있으 역(Nori 같습!	종류 면 0[A mal Cl 니다.	를 선택 (접점(lose)]	택할 수 (Norm 로 동격	≻ 있싙 al Ope 작합니	불니다. en)]이 다. 긱	. 스위 며, 위 비트	치의 점(Dot) 표시가 에 있는 경우 (bit) 별 해당 단자는	
	비트	7	6	5	4	3	2	1		ŀ
	단자	P7	P6	P5	P4	P3	P2	P1		

6.2.3 인버터 과부하 보호(IOLT)

인버터에 정격 전류 이상의 전류가 흐르는 경우, 인버터를 보호하기 위해 반한시 특성에 맞게 보호 기능이 동작합니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
	31~35	다기능 릴레이 1~5 항목	Relay 1~5	0	2		
001	36	다기능 출력 1~5 항목	Q1 Define	σ		-	-

참고

인버터 과부하 보호(IOLT) 기능이 동작하기 전에 다기능 출력 단자를 통해 미리 경보 신호를 출력할 수 있습니다. 이 때, 인버터 과부하 보호 동작(120%, 1 분, 140% 5 초)이 발생하는 누적 시간의 60%(120%, 36 초)가 되면 경보 신호가 출력됩니다. I

6.2.4 속도 지령 상실

단자대의 아날로그 입력이나 통신 옵션, 또는 키패드 등으로 속도를 설정하는 경우, 신호선 단절 등의 원인으로 속도 지령을 상실했을 때 인버터의 동작을 선택할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정	성 값	설격	덩 범위	단위
	11	키패드 지령 상실 시 동작	Lost KPD Mode	0	None	0 1 2 3	None Warning Free-Run	-
PRT	12	속도 지령 상실 시 동작	Lost Cmd Mode	1	Free-Run	-		-
	13	속도 지령 상실 판정 시간	Lost Cmd Time	1.0		0.1	~120.0	sec
	14	속도 지령 상실 시 운전 주파수	Lost Preset F	0.00)	시? 최[딱 주파수~ 대 주파수	Hz

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
	15	아날로그 입력 상실 판정 레벨	AI Lost Level	0	Half of x1		-
OUT	31~35	다기능 릴레이 1~5 항목	Relay 1~5	13	Lost Command	-	-
	33	다기능 출력 1 항목	Q1 Define				

속도 지령 상실 설정 상세

Γ

코드 및 기능	설명						
	운전 발생 동작	운전 지령 설정 방법을 키패드로 하고 운전 중 키패드와의 통신 이 발생하거나 키패드와 본체와의 연결에 문제가 발생하는 경우 인버 동작을 선택합니다.					
	설경	3	기능				
	0	None	보호 동작 없이 속도 지령이 그대로 운전 주파수가 됩니다.				
PRT-11 Lost KPD Mode	1	Warning	다기능 출력 단자대 중 하나에 OUT-31~36 에서 24 : Lost keypad 로 선택하면 이상 발생 시 해당 경고 신호를 출력합니다.				
	2	Free-Run	인버터가 출력을 차단합니다. 모터는 프리 런합니다.	이			
	3	Dec	PRT-07 Trip Dec Time 에서 설정한 시간으로 감속 정지합니다.				
	속도	지령 상실이	발생했을 때 인버터의 동작을 선택합니다.	_			
	설경	3	기능				
PRT-12 Lost Cmd	0	None	보호 동작 없이 속도 지령이 그대로 운전 주파수가 됩니다.				
Mode	1	Free-Run	인버터가 출력을 차단합니다. 모터는 프리 런합니다.				
	2 Dec		PRT-07 Trip Dec Time 에서 설정한 시간으로 감속 정지합니다.				

코드 및 기능	설명						
	3	Hold Input	속도 지령 상실을 판단한 순간부터 지난 10 초간 입력 평균 값을 계산하여 이 값으로 계속 운전합니다.				
	4	Hold Output	속도 지령 상실을 판단한 순간부터 지난 10 초간 출력 평균 값을 계산하여 이 값으로 계속 운전합니다.				
	5	Lost Preset	PRT-14 Lost Preset F 에서 설정한 주파수로 운전합니다.				
	아날 설정	로그 입력에 [합니다.	대한 속도 지령 상실 기준 전압과 판정 시간을				
	설정	3	기능				
PRT-15 AI Lost Level, PRT-13 Lst Cmd Time	0	Half of x1	속도 지령인 아날로그 입력 값이 IN-08, IN-12 인 최소 설정 값의 절반 크기로 입력 신호가 작아진 상태가 PRT-13 Lost Cmd Time(속도 상실 판정 시간)에서 설정한 시간 동안 유지되면 보호 동작을 시작합니다. 예를 들어, 운전 그룹의 Frq 코드에서 속도 지령을 2(V1)로 설정하고, IN-06 V1 Polarity를 0(Unipolar)으로 설정하면, IN-08 V1 Volt x1 에서 설정한 값의 절반 이하 크기로 전압이 입력되면 보호 동작을 실행합니다.				
	1	Below of x1	속도 지령으로 설정된 아날로그 입력의 최소 설정 값보다 작은 신호가 PRT-13 Lost Cmd Time(속도 상실 판정 시간)에서 설정한 시간 동안 계속 유지되면 보호 동작을 시작합니다. IN-08, IN-12 등이 기준 값이 됩니다.				
	IN-08 않습	3, IN-12 에 설정 니다.	정된 값이 0 일 경우에는 Lost Cmd 기능이 동작하지				
PRT-14 Lost Preset F	속도 지령 상실 시 운전 방법(PRT-12 Lost Cmd Mode)을 5(Lost Preset) 로 설정한 경우 보호 기능이 동작하여 계속해서 운전할 주파수를 설정합니다.						

٦

IN-06 V1 Polarity 를 Unipolar 로 설정하고, IN-08 값을 5[V]로 설정해 두었다. PRT-15 AI Lost Level 를 1(Below x1)로 설정하고, PRT-12 Lost Cmd Mode 를 2(Dec), PRT-13 Lost Cmd Time 을 5 초로 설정하면 다음과 같이 동작합니다.

참고

ſ

옵션 카드 및 RS-485 통신으로 운전 중인 경우, PRT-13 Lost Cmd Time(속도 상실 판정 시간)에서 설정한 시간 동안 속도 지령이 없는 경우에 보호 기능이 동작합니다.

6.2.5 제동 저항 사용률 설정

H100 시리즈는 인버터 본체 내부에 제동 회로가 내장되어 있습니다. (30kW 이하)

그룹	코드	명칭	LCD 표시	설경	정 값	설정 범위	단위
PRT	66	제동 저항 사용률	DB Warn %ED	0		0~30	%
	31~35	다기능 릴레이 1~5 항목	Relay 1~5	05	DB		
001	36	다기능 출력 1 항목	Q1 Define	25	Warn %ED	-	-

제동 저항 사용률 설정 상세

코드 및 기능	설명
PRT-66 DB	제동 저항 사용률(%ED: Einschaltdauer)을 설정합니다. 제동 저항 사용률은
Warn %ED	운전 주기 내에서 제동 저항의 동작 비율을 설정합니다. 제동 저항의 최대

① 주의

제동 저항의 소비 전력 이상으로 제동 저항을 사용하지 마십시오. 저항이 과열되어 화재가 발생할 수 있습니다. 열 감지 센서가 있는 저항을 사용하는 경우에는 제동 저항의 센서 출력을 인버터 다기능 입력의 외부 트립 신호로 사용할 수 있습니다.

6.2.6 배터리 저전압 경보

H100 시리즈는 배터리 저전압 경보 기능이 있습니다. 배터리 저전압 경보 기능 사용 여부를 선택할 수 있으며 배터리 저전압 경보 기능을 YES 할 경우 배터리 전압(정상 전압 3[V])이 2[V] 미만일 경우 배터리 저전압 경보를 발생시킵니다. 이 때 배터리를 교체하여 주십시오.

그룹	코드	명칭	LCD 표시	설정	값	설정	성 범위	단위
пот	00	배터리 저전압	Low Dotton	~	Ne	0	No	
PRI	90	검출	Low Battery	0	INO	1	Yes	-

배터리 저전압 경보 설정 상세

코드 및 기능	설명
	인버터 내에 장착되어 있는 RTC기능 용 배터리의 저전압 경보 사용
PRT-90 Low Batterv	여부를 설정할 수 있습니다. 배터리가 2[V]미만의 값이 될 경우
201101	배터리 저전압 경보 레벨을 발생합니다.

① 주의

Г

- 배터리 교체시 배터리 남은 전압에의해 감전이 되지 않게 조심하십시오
- 교체시 인버터 본체 안으로 배터리가 떨어지지 않게 조심하십시오.

6.3 경부하 트립 및 경보

H100 시리즈는 경부하 트립 및 경보 기능이 있습니다.

그룹	코드	명칭	LCD 표시	설정	값	설정범위	단위
	23	경부하 검출 소스	UL Source	0	Output Current	0~1	-
	24	경부하 검출 밴드	UL Band	10.0		0.0~100.0	%
DDT	25	경부하 경보 선택	UL Warn Sel	1	Yes	0~1	-
PKI	26	경부하 경보 시간	UL Warn Time	10.0		0~600.0	sec
	27	경부하 트립 선택	Op Sel for UL	1	Free-Run	0~3	-
	28	경부하 트립 시간	UL Op Time	30.0		0~600.0	sec

경부하 트립 및 경보 설정 상세

코드 및 기능	설명				
PRT-23	경부하 트립을 검출하기 위한 소스를 선택합니다. Output Current, Output				
UL Source	Power를 이용하여 경부하 트립을 검출합니다.				
	AP2-01 Load Tune에 의하여 만들어진 부하 특성 곡선에서 각주파수별				
PRT-24 UL Band	설정되어 있는 시스템 부하량%-UL Band의 값으로 경부하 고장 발생을				
oe Bana	위한 기준 값을 만듭니다.				
PRT-25 UL Warn	경부하 경보를 선택합니다. OUT-31~36에 있는 다기능 출력 단자 기능을				
Sel	7(UnderLoad)로 설정하면 경부하 경보 조건에서 신호를 출력합니다.				
PRT-26 UL Warn	위에서 설명한 경부하 레벨 조건이 설정한 경보 시간 동안 유지되면				
TIme	보호 기능이 동작합니다.				
	경부하 발생 시 인버터의 운전 방법을 설정합니다.				
	-1(Free-Run)로 설정 하면 트립이 발생하며, 출력을 차단합니다.				
PRT-27 Op Sel for	-2(Dec)로 설정 하면 트립이 발생하며, 감속 정지합니다.				
UL	-3(Sleep)로 설정하면 Sleep 모드가 됩니다.				
	(PID 운전 모드일때만 선택 가능합니다. Sleep Boost는 동작하지 않고,				
	Wakeup 방법은 <pid 대기(sleep)모드="" 운전="">의 설명과 동일합니다.)</pid>				
	위에서 설명한 경부하 레벨 조건이 설정한 시간 동안 유지되면 보호				
PR1-28 UL OP TIME	기능이 동작합니다.				

① 주의

경부하 트립을 정상적으로 동작 시키기 위해서는 AP2-01 Load Tune기능을 미리 수행시켜야 하며 AP2-01 Load Tune기능을 수행시킬 수 없는 현장에서는 AP2-02 Load Fit LFreq~AP2-10 Load Fit HFreq 값을 유저가 수동으로 설정해 주어야 합니다. Under Load 기능은 Energy Save 기능 중에는 동작하지 않습니다.

6.3.1 팬 고장 검출

그룹	코드	명칭	LCD 표시	설정 값	설정범위	단위
PRT	79	냉각 팬 고장 선택	Fan Trip Mode	0	Trip	

그룹	코드	명칭	LCD 표시	설정	값	설정범위	단위
OUT	31~35	다기능 릴레이1~5 항목	Relay 1~5	0	Fan		
OUT	36	다기능 출력1 항목	Q1 Define	^o Warning			-

팬 고장 검출 설정 상세

Γ

코드 및 기능	설명	설명						
	냉각	생각 팬 고장 모드를 설정합니다.						
	설	정		기능				
	0		Trip	냉각 팬에서 이상이 검출되면 인버터 출력을				
PRT-79 Fan Trip Mode	0	U Inp		차단하고 팬 트립을 표시합니다.				
				OUT-36 Q1 Define, OUT-31~35 Relay1~5을				
	1		Warning	8(Fan Warning)로 설정한 경우 팬 이상 신호를				
				출력하고, 운전을 계속합니다.				
OUT-36 Q1 Define.	코드 값을 8(Fan Warn			ng)로 설정하면 팬 이상 신호를 출력하고, 운전은				
OUT-31~35	계속	할 수	· 있습니다. 그	L러나 인버터 내부 온도가 일정 온도 이상으로				
Relay1~5	상승	하면	방열판 과열	등의 원인으로 출력이 차단됩니다.				

6.3.2 저전압 트립 시 동작

인버터 입력 전원이 차단되어 내부 직류부 전압이 일정 전압 이하로 내려가면 인버터는 출력을 차단하고 저전압 트립(Low Voltage Trip)을 표시합니다.

그룹	코드	명칭	LCD 표시	설정 값		설정범위	단위
PRT	81	저전압 트립 판정 지연 시간	LVT Delay	0.0		0~60.0	sec
	31~35	다기능 릴레이1~5 항목	Relay 1~5	11	Low Voltago		
001	36	다기능 출력1 항목	Q1 Define		Low voltage		-

저전압 트립 시 동작 설정 상세

코드 및 기능	설명
	코드 값을 11(Low Voltage)로 설정하면 저전압 트립 발생 시 먼저
	인버터 출력을 차단하고, 설정된 시간이 지난 후에 트립 처리합니다.
PRT-81 LVT Delav	다기능 출력이나 릴레이를 이용하여 저전압 트립에 대한 경보 신호를
20.29	발생할 수 있습니다. 경보 신호에는 저전압 트립 지연(LVT Delay)
	시간이 적용되지 않습니다.

6.3.3 운전 중 저전압 고장(Low Voltage 2)선택

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
PRT	82	운전 중 저전압		0	No	0.4	
		트립 판정	Low voltage2	1	Yes	0~1	

인버터 운전 중 입력 전원이 차단 되어 내부 직류부 전압이 일정 전압 이하로 내려가면 인버터는 출력을 차단하고 저전압 고장 2 (Low Voltage2)를 표시합니다. 저전압 고장(Low Voltage)과 달리 전압이 상승하여 정상 상태로 되더라도 사용자가 고장 상태를 해제하지 않는다면, 여전히 고장 상태로 남아 있습니다.

6.3.4 다기능 단자로 출력 차단

다기능 입력 단자를 출력 차단 신호 단자로 설정하면 해당 단자에 신호 입력 시 운전이 중단됩니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
IN	65~71	Px 단자 기능 설정	Px Define (Px: P1~P7)	5	BX	0~55	-

다기능 단자로 출력 차단 설정 상세

Γ

코드 및 기능	설명
	다기능 입력 단자 기능을 5(BX)로 설정한 경우, 운전 중에 신호가 입력(On)되면 인버터가 출력을 차단하고 키패드(LCD 로더) 표시창에 BX 를 표시합니다.
IN-65~71 Px Define	키패드(LCD 로더)에 BX 가 표시되는 경우, 신호 입력 시의 주파수나 전류와 같은 정보를 모니터할 수 있습니다. 운전 지령이 입력된 상태에서 BX 단자가 오프(Off)되면 다시 모터를 가속합니다.(이 경우 속도써치를 이용한 기동이 아닐 시에는 과전류 트립이 발생할 수 있습니다.)

6.3.5 **트립 해제**

키패드 혹은 다기능 입력 단자로 트립 해제 후 인버터를 재기동하는 기능입니다.

그룹	코드	명칭	LCD 표시	설정	값	설정 범위	단위
IN	65~71	Px 단자 기능 설정	Px Define (Px: P1~P7)	3	RST	0~55	-

트립 해제 설정 상세

코드 및 기능	설명
	키패드에 있는 [OFF] 키 혹은 다기능 입력 단자를 이용해 인버터를
IN-65~71 Px Define	재기동할 수 있습니다. 다기능 입력 단자의 기능을 3(RST)으로 설정한 후
	트립 발생 상태에서 단자에 신호를 입력하면 트립 상태가 해제됩니다.

6.3.6 옵션 트립 시 동작

옵션 카드와 인버터 본체 사이의 통신에 이상이 발생하거나 운전 중에 옵션 카드가 분리된 경우 인버터의 동작 상태를 선택합니다.

그룹	코드	명칭	LCD 표시	설정	! 값	설정범위	단위
				0	None		
PRT	80	옵션 트립 시 동작 선택	Opt Trip Mode	1	Free-Run	0~3	-
				2	Dec		

٦

옵션 트립 시 동작 설정 상세

코드 및 기능	설명	설명					
	설정		기능				
	0	None	어떠한 동작도 하지 않습니다.				
PRT-80 Opt Trip Mode	1	Free-Run	인버터 출력을 차단하고 트립 정보를 키패드에 표시합니다.				
	2	Dec	PRT-07 Trip Dec Time 에서 설정한 값으로 감속합니다.				

6.3.7 모터 없음 트립

인버터의 출력 측에 모터가 연결되지 않은 상태에서 운전 지령을 내린 경우, 모터 없음 트립(No Motor Trip)이 발생하여 시스템을 보호합니다.

그룹	코드	명칭	LCD 표시	설정	성 값	설정 범위	단위
	31	모터 없음 트립 시 동작	No Motor Trip	0	None	-	-
PRT	32	모터 없음 트립 전류 레벨	No Motor Level	5		1~100	%
	33	모터 없음 감지 시간	No Motor Time	3.0		0.1~10	sec

모터 없음 트립 설정 상세

코드 및 기능	설명
PRT-32 No Motor	정격 전류(BAS-13) 대비 인버터의 출력 전류가 PRT-32 No Motor
Level, PRT-33 No Motor	Level에서 설정한 레벨 이하인 상태로 PRT-33 No Motor Time 에서 설정한
Time	시간 동안 유지되면 모터 없음 트립(No Motor Trip)이 발생합니다.

① 주의

Г

BAS-07 V/F Pattern 을 1(Square)로 설정한 경우, PRT-32 모터 없음 트립 전류 레벨(No Motor Level)을 공장 출하 값보다 작은 값으로 설정하십시오. 그렇게 하지 않으면, 모터 없음 트립(No Motor Trip) 설정 후 구동 시 출력 전류가 작아 모터 없음 트립이 발생할 수 있습니다.

6.3.8 브로큰 벨트

Fan, Pump 사용시 모터와 부하 사이에 벨트나 커플링을 하는 경우, 벨트나 커플링이 파손될 시 이를 인버터가 검출하는 기능

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
PRT	91	브로큰 벨트 동작 설정	BrokenBelt Sel	0 : None	 None Warning Free Run 	-
	92	브로큰 벨트 동작 주파수	BrokenBelt Freq	15.00	15.00~MaxFreq	Hz
	93*	모터 토크 전류	Current Trq	-	0~100.0	%
	94**	브로큰 벨트 동작 토크 전류	BrokenBelt Trq	10.0	10.0 0~100.0	
	95	브로큰 벨트 동작 지연 시간	BrokenBelt Dly	10.0	10.0	S

* 모터 정격 토크 (%) 대비 전류 출력 토크 값

** 모터 정격 토크 (%) 대비 벨트 작동 토크 파손

인버터가 PRT-92 이상의 주파수로 운전 중이고, 현재 토크가 PRT-94 에서 설정한 범위 이내에 도달한 후 PRT-95 에 설정한 시간 이상으로 위와 같은 동작을 수행할 경우 Broke Belt 동작이 수행됨.

6.4 부품 수명 진단

ſ

인버터에서 일정 주기로 교체해야 하는 Fan, Main Capacitor 의 수명을 진단하여 인버터 신뢰성 향상을 위한 기능입니다.

6.4.1 Main Capacitor 수명 진단

인버터의 Main Capacitor 의 수명을 Capacitance 값의 변화를 통해서 예측할 수 있습니다.

그룹	코드	명칭	LCD 표시	설정 값	섵	철정 범위	단위
	83	커패시턴스 측정 전류 레벨	CAP.Diag Perc	0.0	10.0 ~ 100.0		%
PRT	84		CAP.Diag	0:None	0	None	
		CAP. 측정 모드			1	CAP.Diag 1	%
					2	CAP.Diag 2	
					3	CAP.Init	
	85	CAP. 열화 판정 Level	CAP.Level1	0	0.0~100.0		%
	86	CAP. 측정 Level	CAP.Level2	0	0.0~1	0.00	%
OUT	31~35	릴레이 1~5 출력	Relay 1~5	34	CAP.Warning		-

Main Capacitor 수명 진단 설정 상세

코드 및 기능	설명					
PRT-83 CAP.Diag	수명 진단시에 인버터가 출력할 전류 레벨을 설정합니다. 수명 진단을					
Perc	위해	서는 0%이상의	값을 설정해야 합니다.			
	커패	시터 수명 진단	! 모드를 설정합니다. 이는 인버터 설치시, 유지보수시			
	각각의 모드로 나뉘어져 있어서 적절히 설정해야만 커패시터 수명 진단					
	기능을 사용할 수 있습니다.					
	설정		기능			
PRT-84 CAP.Diag	0 None 수명 진단 기능을 사용하지 않습니다.					
	1	CAP.Diag 1	인버터 최초 설치시, 초기 커패시턴스를 추정합니다.			
	2 CAP.Diag 2 인버터 유지 보수시, 당시		인버터 유지 보수시, 당시 커패시턴스를 추정합니다.			
	3	CAP.Init	커패시턴스 추정한 값을 0으로 초기화 합니다.			
PRT-85 CAP.Level 1	키커패시터 교체 기준이 되는 커패시턴스 레벨을 설정합니다.					
PRT-86 CAP.Level	PRT-84의 모드에 따라서 추정되는 커팬시턴스 값을 표시합니다. 이 값이					

코드 및 기능	설명
2	PRT-85에 설정된 값보다 낮을 시 키패드에 "CAP Warning" 경고 메시지가
	발생 됩니다.

① 주의

- 진단 기능은 커패시터 교체 시기 및 팬 교체 시기에 대한 참고용이며 절대적인 값은 아니므로 유의 하십시오.
- [DRV-08 AUTO Mode Sel]이 Enabled 되어 있는 경우 커패시터 수명 진단은 인버터 AUTO 모드의 정지 상태에서만 동작합니다.
- [DRV-08 AUTO Mode Sel]이 Disabled 되어 있는 경우 커패시터 수명 진단은 인버터 OFF 모드 및 AUTO 모드의 정지 상태에서만 동작합니다.

6.4.2 Fan 수명 진단

Fan 사용 시간을 누적하고 일정 시간 이상 Fan을 사용했을 때 교체 알람을 주는 기능입니다.

그룹	코드	명칭	LCD 표시	설정 값	섵	결정 범위	단위
PRT	87	Fan 사용 누적%	Fan Time Perc	0.0	0.0~6553.5		%
	88	Fan 교체 경보 레벨	Fan Exchange	90.0	0.0~100.0		%
CNF	75	Fan 운전 누적 시간	Fan Time Rst	0: No	0	No	
		초기화			1	Yes	
OUT	31 ~35	릴레이 1~5 출력	Relay 1~5	35	Fan Exchange		-

Fan 수명 진단 설정 상세

코드 및 기능	설명				
	50,000시간을 기준으로 Fan 운전 누적 시간을 %단위로 표시합니다.				
PRT-87 Fan Time Perc	이 값이 PRT-88의 값보다 많을시 키패드에 "Fan Exchange" 경고				
	문구가 발생합니다.				
PRT-88 Fan Exchange	Fan 수명 교체 기준을 % 단위로 표시합니다.				
CNE 75 For Time Det	Fan 운전 누적 시간을 초기화 하는 기능입니다.				
CINE-75 Fail Time RSt	설정	기능			

코드 및 기능	설명					
	0	No	Fan 수명 누적 초기화를 하지 않습니다.			
	1	Yes	Fan 수명 누적 초기화를 실행합니다.			

①주의

Г

• 진단 기능은 커패시터 교체 시기 및 팬 교체 시기에 대한 참고용이며 절대적인 값은 아니므로 유의 하십시오.

6.5 고장/경보 일람표

다음 표는 H100 인버터 사용 중 발생할 수 있는 모든 고장 및 경보를 보여줍니다. 고장 및 경보에 대한 자세한 사항은 <u>314 페이지, 6 보호 기능 사용하기</u>를 참조하십시오.

분류		LCD 표시	설명
		Over Current1	과전류 트립
		Over Voltage	과전압 트립
		External Trip	외부 신호에 의한 트립
		NTC Open	온도 센서 트립
		Over Current2	암(ARM) 단락 전류 트립
	래치(Latch)	Option Trip-x*	옵션 트립*
		Over Heat	과열 트립
고장		Out Phase Open	출력 결상 트립
		In Phase Open	입력 결상 트립
		Ground Trip	지락 트립
		Fan Trip	팬 트립
		E-Thermal	모터 과열 트립
		IO Board Trip	IO 보드 연결 트립
		No Motor Trip	모터 없음 트립
		Low Voltage2	운전 중 저전압 트립
분류		LCD 표시	설명
--------------------------------------	------------	----------------	---------------------------------------
		ParaWrite Trip	파라미터 쓰기 트립
		Pipe Broken	파이프 브로큰 트립
		Damper Err	댐퍼 에러 트립
		Over Load	모터 과부하 트립
		Under Load	모터 경부하 트립
		CleanRPTErr	빈번한 펌프 클린 발생 트립
		Level Detect	Level Detect 트립
		MMC Interlock	MMC 인터락 트립
		Inverter OLT	인버터 과열 트립
		Thermal Trip	전동기 과열 트립
		Lost KeyPad	키패드 상실 트립
		Broken Belt	브로큰 벨트 트립
		Pipe Broken	파이프 브로큰 트립
		Fuse Open	퓨즈 오픈 트립 (315~500kW)
		InFAN Trip	내부 팬 트립 (110~500kW)
		Low Voltage	저전압 트립
		BX	비상 정지 트립
	네 펄(Levei)	Lost Command	지령 상실 트립
		Lost Keypad	키패드 상실 트립
		EEP Err	외부 메모리 에러
		ADC Off Set	아날로그 입력 에러
	아드웨어	IO Board Trip	IO보드 연결 트립
	오뉴(Fatal)	Watch Dog-1	
		Watch Dog-2	CPU 와시족(Watch Dog) 트립
		Lost Command	지령 상실 경보
		Over Load	과부하 경보
경보(Warr	ning)	Under Load	경부하 경보
C(((((((((((((((((((((((((((((((((((Inv Over Load	인버터 과부하 경보
		Fan Warning	·····································

분류	LCD 표시	설명
	DB Warn %ED	제동 저항 사용률 경보
	Low Battery	배터리 저전압 경보
	Fire Mode	Fire Mode 동작 경보
	Pipe Broken	파이프 브로큰 경보
	Level Detect	Level Detect 경보
	CAP. Warning	커패시터 수명 경보
	Fan Exchange	팬 교체 시기 경보
	Lost Keypad	키패드 상실 경보
	Load Tune	부하 곡선 튜닝 경보
	Broken Belt	브로큰 벨트 경보
	ParaWrite Fail	스마트 카피어 오류 경보
	Rs Tune Err	오토 튜닝 경보(RS)
	Lsig Tune Err	오토 튜밍 경보(Lsigma)
	InFAN Warning	내부 팬 경보 (110~500kW)

참고

Г

Latch 타입의 트립은 트립이 발생한 후 트립 상태가 해제되도 유저가 인위적으로 리셋을 하지 않을 경우 인버터 스스로가 고장을 해제 하지 못합니다.

Level 타입의 트립은 트립이 발생한 후 트립 상태가 해제되면 인버터 스스로가 고장을 해제 가능합니다.

Fetal 타입의 트립은 트립이 발생한 후 인버터를 Off 했다가 다시 켜지 않는 이상 고장 해제 방법이 없습니다.

7 RS-485 통신 기능 사용하기

이 장에서는 RS-485 통신 기능을 이용하여 원거리에서 PLC 나 컴퓨터로 인버터를 제어하는 방법을 설명합니다. RS-485 통신 기능을 사용하려면 먼저 통신용 전선을 연결하고, 인버터에서 통신 관련 각종 파라미터를 설정해야 합니다. 통신 프로토콜과 통신 관련 파라미터를 참조하여 RS-485 통신 기능을 사용하십시오.

7.1 통신 규격

H100 제품군은 RS-485 표준 통신 방식으로 PLC 및 컴퓨터와 데이터를 주고 받을 수 있습니다. 또한, RS-485 표준 통신 방식은 멀티 드롭 링크 시스템(Multi Drop Link System)을 지원하며, 노이즈에 강한 인터페이스를 제공합니다. 자세한 통신 규격은 다음 표를 참조하십시오.

항목	규격		
통신 방식/전송 형태	RS-485/Bus방식, 멀티 드롭 링크 시스템(Multi Drop Link System)		
인버터 모델명	H100		
인버터연결 대수/전송거리	최대 16대/최대 1,200m(권장 거리: 700m 이내)		
통신용 권장 전선	0.75mm²(18AWG), 차폐 연선		
설치 형태	제어 단자대의 전용 단자(S+/S-/SG)에 연결		
토시 저의	인버터 내부와 절연된 전원을 통신 전원으로 사용		
승선 선권	(인버터에서 공급)		
토시 소드	1200/2400/4800/9600/19200/38400/57600/115200bps 선택 가능		
	BAC net의 경우(9600/19200/38400/76800bps)만을 지원합니다.		
제어 절차	비 동기 통신 체계		
통신 체계	반 이중 통신 방식(Half Duplex System)		
문자 체계	모드버스-RTU(Modbus-RTU): Binary, LS Bus: ASCII		
스톱 비트(Stop bit) 길이	1비트/2비트		
프레임 에러 체크	2바이트		
패리티 확인(Parity Check)	None/Even/Odd		

7.2 통신 시스템 구성

ſ

RS-485 통신 시스템에서는 PLC 또는 컴퓨터가 마스터(Master), 인버터가 슬레이브(Slave)가 됩니다. 컴퓨터를 마스터로 사용하는 경우 컴퓨터에 RS-232 카드를 내장해야 하며, RS-232/RS-485 컨버터를 통해 인버터와 통신할 수 있습니다. RS-232/RS-485 컨버터의 규격 및 성능은 제조 회사에 따라 다르나 기본 기능은 같습니다. 자세한 사용 방법은 제조 회사의 사용 설명서를 참조하십시오.

다음 시스템 구성도를 참조하여 통신용 전선을 연결하고, 인버터에서 각종 통신 관련 파라미터를 설정하십시오.

7.2.1 통신선 연결

인버터의 전원이 완전히 차단되었는지 확인한 후, 제어 단자대의 S+/S-/SG 단자에 RS-485 통신용 전선을 연결하십시오. 인버터는 최대 16대까지 연결할 수 있습니다. 통신용 전선은 차폐 연선을 사용하십시오.

통신선은 최대 1,200m 까지 연결 가능하지만 안정적인 통신을 위해 700m 이내로 연결할 것을 권장합니다. 통신선의 길이가 1,200m 를 초과하거나 인버터 연결 대수가 많아 통신 속도가 저하될 경우 리피터(Repeater)를 사용하십시오. 리피터는 장거리 통신을 하는 경우, 또는 노이즈가 심한 환경에서 사용하면 효과적입니다.

① 주의

PLC 또는 컴퓨터와 인버터의 SG 단자를 반드시 연결하여 주십시오. SG 단자를 연결하지 않으면 노이즈에 의해 통신 오류가 발생할 수 있습니다.

7.2.2 통신 관련 파라미터 설정

통신선이 올바르게 연결되었는지 확인한 후 인버터의 전원을 켜고 다음 통신 관련 파라미터를 설정하십시오.

그룹	코드	명칭	LCD 표시		설정 값	설정 범위	단위
	01	내장형 통신 인버터 ID	Int485 St ID	1		1~ MaxComID ¹²	-
	02	내장형 통신 프로토콜	Int485 Proto	0	ModBus RTU	0~6	-
COM	03	내장형 통신 속도	Int485 BaudR	3 9600 bps		0~8	-
	04	내장형 통신 프레임 설정	Int485 Mode	0	D8/PN/S1	0~3	-
	05	수신 후 송신 딜레이	Resp Delay	5		0~1000	msec

٦

통신 관련 파라미터 설정 상세

코드 및 기능	설명						
COM-01 Int485 St ID	인버터 수 있습						
	내장된 Metasy:	내장된 프로토콜은 모드버스-RTU(Modbus-RTU), LS INV 485, BAC net, Metasys-N2 입니다.					
	설정		기능				
COM-02 Int/185	0	Modbus-RTU	모드버스-RTU(Modbus-RTU) 호환				
Proto			프로토콜				
11010	2	LS INV 485	LS 인버터 전용 프로토콜				
	4	BACnet	BAC net 프로토콜				
	5	Metasys-N2	Metasys-N2 프로토콜				
	6	ModBus Master	Master Follower 전용 프로토콜				

¹² MaxComID는 AP1-40의 설정이 (4: Serve Drv)로 설정되는경우는 8, COM-02의 설정이 (4: BACnet)으로 설정되는 경우는 127, 그외의 경우는 250 입니다.

코드 및 기능	설명				
	통신 속	도를 설정합니	다. 최대 115200bps 까지	설정할 수 있습니다.	
	최대 설	정 범위는 프로	르토콜에 따라 변경됩니다.		
	설정	기능			
	0	1200bp	S		
	1	2400bp	S		
	2	4800bp	S		
	3	9600bp	S		
COM-03 Int485	4	19200b	ps		
BaudR	5	38400b	ps		
	6	56Kbps	s(57600bps)		
	7	76.8Kb	ps(76800bps)		
	8	115Kbp	os(115200bps)		
	※COM-02 Int485 Prtoto 의 설정이 BACnet 일 경우 9600bps, 19200bps,				
	38400bps, 76.8kbps 만 설정 가능합니다.				
	※COM-02 Int485 Prtoto 의 설정이 Metasys-N2 일 경우 통신속도는				
	9600bps	s으로 고정되며	켜 COM-03 Int485 BaudR 눈	= 보여지지 않습니다.	
	통신 프레임 구성을 설정합니다. 데이터 길이와 패리티 확인 방법,				
	스톱 비트 수를 설정할		압니다.		
	설정		기능		
	0	D8/PN/S1	8비트 데이터/패리티 확인 안함/스톱 비트 1 개		
COM-04 Int485	1	D8/PN/S2	8 비트 데이터/패리티 확인 안함/스톱 비트 2 개		
Mode	2	D8/PE/S1	8 비트 데이터/짝수 패리티 확인/스톱 비트 1 개		
	3	D8/PO/S1	8비트 데이터/홀수 패리티	확인/스톱 비트 1 개	
	구성은	D8/PN/S1 로 _	고정 되며 COM-04 Int485	Mode 는 보여지지	
	않습니더	₽.			
	슬레이브	브(인버터)가 미	·스터에게 응답하는 시간을	을 설정합니다. 마스터가	
	슬레이브	크의 빠른 응답	을 처리하지 못할 때 사용	하십시오. 이 기능	
Delay	- " '- 퀴드륵	직접한 값으로	설정하면 마스터안 슬레	이브 간의 통신을	
		·····································		- $ 0$ $ 1$	
	원활하기	ㅔ 할 수 있습니	- 다.		

Г

7.2.3 운전 지령 및 주파수 설정

DRV-06 Cmd Source 코드를 3(Int 485), DRV-07 Freq Ref Src 코드를 6(Int 485)으로 설정하면 통신 기능을 이용하여 공통 영역에 있는 파라미터에 운전 지령 및 주파수를 설정할 수 있습니다. 운전 지령 방법은 p.<u>100</u> 주파수 지령 방법은 p.<u>94</u>을 참고하십시오<u>.</u>

그룹	코드	명칭	LCD 표시	- -	설정 값	설정 범위	단위
DRV	06	운전 지령 방법	Cmd Source	3	Int 485	0~5	-
	07	주파수 설정 방법	Freq Ref Src	6	Int 485	0~11	-

7.2.4 지령 상실 보호 동작 설정

일정 시간 동안 통신에 문제가 발생하는 경우 판정 기준 및 보호 동작을 설정합니다.

그룹	코드	명칭	LCD 표시	, -	설정 값	설정 범위	단위
DDT	12	속도 지령 상실시 동작	Lost Cmd Mode	0	None	0~5	-
PKI	13	속도 지령 상실 판정 시간	Lost Cmd Time	6	1.0	0.1~120.0	Sec

지령 상실	보호	동작	설정	상세
-------	----	----	----	----

Г

코드 및 기능	설명				
	PRT-13 코드에서 설정한 시간 동안 통신 이상이 발생했을 때 인버터의 동작을 선택합니다.				
	설정		기능		
PRT-12 Lost Cmd Mode, DRT 12 Lost	0	None	보호 동작 없이 속도 지령이 그대로 운전		
			주파수가 됩니다.		
	1	Free-Run	인버터가 출력을 차단하며, 모터는 프리 런합니다.		
Cmd Time	2	Dec	감속 정지합니다.		
	3	Hold Input	속도 상실 이전까지 입력된 속도 지령으로 계속		
			운전합니다.		
	4	Hold Output	속도 상실 이전의 운전 주파수로 계속 운전합니다.		
	5	Lost Preset	PRT-14 코드에서 설정한 주파수로 운전합니다.		

7.3 LS INV 485/Modbus-RTU 통신

7.3.1 가상 다기능 입력 설정

LS INV 485 와 Modbus-RTU 의 경우 통신(0h0385)으로 다기능 입력을 제어할 수 있습니다. COM-70~77 코드에 원하는 기능을 설정한 후 0h0385 에 원하는 기능이 설정된 비트 값을 1 로 설정하면 각 비트에 설정된 기능이 동작합니다. 이 기능은 IN-65~71 코드와는 별개로 동작하며, 중복 설정할 수 없습니다. COM-82 코드에서 가상 다기능 입력이 들어오는지 쉽게 확인할 수 있습니다. 이때 운전 그룹 DRV 코드는 운전 지령 소스에 맞게 설정하십시오.

그룹	코드	명칭	LCD 표시	설	정 값	설정	단위
	70~77	통신 다기능 입력 x	Virtual DI x(x: 1~8)	0	None	0~55	-
СОМ	82	통신 다기능 입력 모니터	Virt DI Status	-	-	-	-

예) Int485 로 가상 다기능 입력 공통 영역을 제어하여 정방향 운전(Fx) 지령을 보내려면, COM-70 코드를 Fx 로 설정하십시오. 그런 다음 통신 번지 0h0385 에 0h0001 값을 주면 정방향 운전(Fx) 기능이 동작합니다.

7.3.2 통신으로 설정한 파라미터 값 저장

LS INV 485 와 Modbus-RTU 의 경우 통신으로 공통 영역 파라미터 또는 키패드 파라미터를 설정하고 인버터를 동작한 후, 인버터의 전원을 껐다가 다시 켜면 통신으로 설정하기 이전의 설정으로 돌아갑니다.

CNF-48 코드를 1(Yes)로 설정하면 현재 설정되어 있는 값이 모두 인버터에 저장되어 전원을 껐다가 다시 켜도 현재 설정 값이 유지됩니다.

통신에서 0h03E0에 0을 설정한 후 다시 1로 설정하면 현재 설정 값이 모두 인버터에 저장되어 전원을 껐다가 다시 켜도 현재 설정 값으로 유지됩니다. 단,1로 설정된 상태에서 다시 0으로 설정할 때는 적용되지 않습니다.

그룹	코드	명칭	LCD 표시		설정 값	설정 범위	단위
	40	피기미디 지자	Parameter	0	No	0 1	
CNF	48	파라미터 서상	Save	1	Yes	0~1	-

7.3.3 LS INV 485/Modbus-RTU 통신 전체 메모리 맵

Г

통신 영역	메모리 맵	설명	
인버터 통신 호환 공통 영역	0h0000~0h00FF	iS5, iP5A, iV5, iG5A, S100, H100 과 호환되는 영역	
	0h0100~0h01FF	COM-31~38, COM-51~58 에 등록된 영역	
파라미터 등록 형태 영역	0h0200~0h023F	User Group 에 등록된 영역	
	0h0240~0h027F	Macro Group 에 등록된 영역	
	0h0280~0h02FF	Reserved	
	0h0300~0h037F	인버터 모니터 영역	
	0h0380~0h03DF	인버터 제어 영역	
	0h03E0~0h03FF	인버터 메모리 제어 영역	
	0h0400~0h0FFF	Reserved	
	0h1100	DRV Group	
	0h1200	BAS Group	
	0h1300	ADVGroup	
	0h1400	CON Group	
통신 공통 영역	0h1500	IN Group	
	0h1600	OUT Group	
	0h1700	COM Group	
	0h1800	PID Group	
	0h1900	EPI Group	
	0h1A00	AP1 Group	
	0h1B00	AP2 Group	
	0h1C00	AP3 Group	
	0h1D00	PRT Group	
	0h1E00	M2 Group	

7.3.4 데이터 전송용 파라미터 그룹 설정

파라미터 그룹을 설정하면 통신 기능 그룹(COM)에서 등록한 통신 번지를 이용하여 통신할 수 있습니다. 한꺼번에 여러 개의 파라미터를 한번의 통신 프레임으로 통신할 때 사용합니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
004	31~38	출력 통신 번지 x	Para Status-x	-	0000~FFFF	Hex
COIVI	51~58	입력 통신 번지 x	Para Control-x	-	0000~FFFF	Hex

현재 등록된 통신 기능 그룹 파라미터

통신 번지	파라미터	비트별 할당 내용
0h0100~0h0107	Status Parameter-1~ Status Parameter-8	COM-31~38 코드에 등록된 파라미터 값(읽기 전용)
0h0110~0h0117	Control Parameter-1~ Control Parameter-8	COM-51~58 코드에 등록된 파라미터 값(읽기/쓰기 가능)

참고

제어 파라미터(Control Parameter)를 등록할 때 운전 속도(0h0005, 0h0380, 0h0381)와 운전 지령(0h0006, 0h0382) 파라미터는 파라미터 제어 프레임(Para Control Frame)에서 가장 뒤에 설정하십시오. 파라미터 제어-h(Para Control-h)의 가장 높은 번호에 운전 속도와 운전 지령을 등록해야 합니다.

예) 파라미터 제어 번호(Para Ctrl Num)가 5 일 경우 파라미터 제어-4(Para Control-4)에는 운전 속도, 파라미터 제어-5(Para Control-5)에는 운전 지령을 등록합니다.

7.3.5 사용자/매크로 그룹을 위한 파라미터 그룹 설정

파라미터 그룹을 설정하면 U&M 모드에 등록한 USR Grp, MAC Grp 통신 번지로 통신할 수 있습니다.

통신 번지	파라미터	비트별 할당 내용
0h0200	User Grp. Code 1	U&M > USR → 1 에 등록된 파라미터 값(읽기/쓰기 가능)
0h0201	User Grp. Code 2	U&M > USR → 2 에 등록된 파라미터 값(읽기/쓰기 가능)
		•
		•
•		•
0h023E	User Grp. Code	U&M > USR → 63 에 등록된 파라미터 값(읽기/쓰기
0h023F	User Grp. Code	U&M>USR → 64 에 등록된 파라미터 값(읽기/쓰기

현재 등록된 사용자 그룹 파라미터

Γ

현재 등록된 매크로 그룹 파라미터

통신 번지	파라미터	비트별 할당 내용
0h0240	Macro Grp. Code 1	U&M > MC → 1 에 등록된 파라미터 값
0h0241	Macro Grp. Code 2	U&M > MC → 1 에 등록된 파라미터 값
		· ·
0h02A2	Macro Grp. Code 98	U&M > MC → 98 에 등록된 파라미터 값
0h02A3	Macro Grp. Code 99	U&M > MC → 99 에 등록된 파라미터 값

7.3.6 LS INV 485 프로토콜

슬레이브(인버터)가 마스터(PLC 또는 PC)의 읽기/쓰기 요구에 응답합니다. 프로토콜의 기본 형태는 다음과 같습니다.

요구

ENQ	국번	CMD	데이터	SUM	EOT
1 byte	2 bytes	1 byte	n bytes	2 bytes	1 byte

정상 응답

ACK	국번	CMD	데이터	SUM	EOT
1 byte	2 bytes	1 byte	n x 4 bytes	2 bytes	1 byte

에러 응답

NAK	국번	CMD	에러 코드	SUM	EOT
1 byte	2 bytes	1 byte	2 bytes	2 bytes	1 byte

• 요구는 ENQ 로 시작하여 EOT 로 끝납니다.

• 정상 응답은 ACK 로 시작하여 EOT 로 끝납니다.

• 에러 응답은 NAK 로 시작하여 EOT 로 끝납니다.

- 국번은 인버터 번호를 나타내며 2 바이트 ASCII-HEX 로 표시합니다. ASCII-HEX 는 '0'~'9', 'A'~'F'로 구성되는 16 진수 표시법입니다.
- CMD 는 대문자를 사용하며, 소문자 사용 시 'IF' 에러가 나타납니다. 다음 표를 참조하 십시오.

문자	ASCII-HEX	명령
'R'	52h	Read
'W'	57h	Write
'X'	58h	모니터 등록 요구
'Y'	59h	모니터 등록 실행

• 데이터는 ASCII-HEX 로 표시합니다(데이터 값이 3000 일 경우: 3000 → '0"B"B"8'h → 30h 42h 42h 38h).

• 에러 코드는 ASCII-HEX 로 표시합니다(358 페이지, 7.3.6.4 에러 코드 참조).

- 송수신 버퍼는 송신-39 바이트, 수신-44 바이트입니다.
- 모니터 등록 버퍼는 8 워드(Word)입니다.
- SUM 은 통신 에러를 점검하기 위해 사용합니다.
- SUM = (국번+CMD+데이터)의 하위 8 비트의 ASCII-HEX 형태

예) 3000 번지부터 1 개의 내용을 읽으려는 읽기 요청의 경우, SUM='0' + '1' + 'R' + '3' + '0' + '0' + '0' + '1'=30h + 31h + 52h + 33h + 30h + 30h + 30h + 31h=1A7h SUM 계산 시 ENQ, ACK, NAK 등의 제어 값은 제외됩니다. SUM 은 하위 한 byte 취하므로 A7h 가 SUM 이 됩니다.

ENQ	국번	CMD	번지	번지 개수	SUM	EOT
05h	'01'	'R'	'3000'	'1'	'A7'	04h
1 byte	2 bytes	1 byte	4 bytes	1 byte	2 bytes	1 byte

참고

ſ

브로드캐스트(BroadCast) 기능

네트워크에 연결된 모든 인버터에 동시 지령을 내릴 때 사용합니다. 국번 255 번으로 지령을 내리면 각 인버터는 자신의 설정 국번이 아니더라도 지령을 처리합니다. 단, 응답은 하지 않습니다.

7.3.6.1 읽기 상세 프로토콜

읽기 요구: XXXX 번지에서부터 연속된 n 개의 워드(Word) 데이터의 읽기 요청의 경우

ENQ	국번	CMD	번지	번지 개수	SUM	EOT
05h	'01'~'FA'	'R'	'XXXX'	'1'~'8' = n	'XX'	04h
1 byte	2 bytes	1 byte	4 bytes	1 byte	2 bytes	1 byte

총 바이트(Total byte) = 12, 작은 따옴표(")는 문자(Character)임을 나타냅니다.

읽기 정상 응답

ACK	국번	CMD	데이터	SUM	EOT
06h	'01'~'FA'	'R'	'XXXX'	'XX'	04h
1 byte	2 bytes	1 byte	n x 4 bytes	2 bytes	1 byte

총 바이트(Total byte) = 7 + n x 4 = 최대 39

읽기 에러 응답

NAK	국번	CMD	에러 코드	SUM	EOT
15h	'01'~'FA'	'R'	'**'	'XX'	04h
1 byte	2 bytes	1 byte	2 bytes	2 bytes	1 byte

총 바이트(Total byte) = 9

7.3.6.2 쓰기 상세 프로토콜

쓰기 요구

ENQ	국번	CMD	번지	번지개수	데이터	SUM	EOT
05h	'01'~'FA'	'W'	'XXXX'	'1'~'8' = n	'XXXX'	'XX'	04h
1 byte	2 bytes	1 byte	4 bytes	1 byte	n x 4 bytes	2 bytes	1 byte

٦

총 바이트(Total byte) = 12 + n x 4 = 최대 44

쓰기 정상 응답

ACK	국번	CMD	데이터	SUM	EOT
06h	'01'~'FA'	'W'	'XXXX'	'XX'	04h
1 byte	2 bytes	1 byte	n x 4 bytes	2 bytes	1 byte

총 바이트(Total byte) = 7 + n x 4 = 최대 39

쓰기 에러 응답

NAK	국번	CMD	에러 코드	SUM	EOT
15h	'01'~'FA'	'W'	'**'	'XX'	04h
1 byte	2 bytes	1 byte	2 bytes	2 bytes	1 byte

총 바이트(Total byte) = 9

7.3.6.3 모니터 등록 상세 프로토콜

모니터 등록은 지속적으로 모니터할 필요가 있는 데이터를 미리 지정하여 주기적으로 데이터를 업데이트하는 기능입니다.

모니터 등록 요구: n 개의 번지(연속되지 않아도 됨)를 등록 요구할 경우

ENQ	국번	CMD	번지 개수	번지	SUM	EOT
05h	'01'~'FA'	'Χ'	'1'~'8'=n	'XXXX'	'XX'	04h
1 byte	2 bytes	1 byte	1 byte	n x 4 bytes	2 bytes	1 byte

총 바이트(Total byte) = 8 + n x 4 = 최대 40

모니터 등록 정상 응답

٢

ACK	국번	CMD	SUM	EOT
06h	'01'~'FA'	'Χ'	'XX'	04h
1 byte	2 bytes	1 byte	2 bytes	1 byte

총 바이트(Total byte) = 7

모니터 등록 에러 응답

NAK	국번	CMD	에러 코드	SUM	EOT
15h	'01'~'FA'	'X'	'**'	'XX'	04h
1 byte	2 bytes	1 byte	2 bytes	2 bytes	1 byte

총 바이트(Total byte) = 9

모니터 등록 실행 요구: 모니터 등록 요구로 등록된 번지의 데이터 읽기 요구

ENQ	국번	CMD	SUM	EOT
05h	'01'~'FA'	'Y'	'XX'	04h
1 byte	2 bytes	1 byte	2 bytes	1 byte

총 바이트(Total byte) = 7

모니터 등록 실행 정상 응답

ACK	국번	CMD	데이터	SUM	EOT
06h	'01'~'FA'	Ŷ	'XXXX'	'XX'	04h
1 byte	2 bytes	1 byte	n x 4 bytes	2 bytes	1 byte

총 바이트(Total byte) = 7 + n x 4 = 최대 39

모니터 등록 실행 에러 응답

NAK	국번	CMD	에러 코드	SUM	EOT
15h	'01'~'FA'	Ϋ́	'**'	'XX'	04h
1 byte	2 bytes	1 byte	2 bytes	2 bytes	1 byte

총 바이트(Total byte) = 9

7.3.6.4 에러 코드

항목	표시 약어	설명
	IE	수신한 기능을 슬레이브에서 수행할 수 없는 경우
ILLEGAL FUNCTION	IF	해당 기능이 없는 경우
ILLEGAL DATA	10	수신한 파라미터 번지가 슬레이브에서 유효하지 않은
ADDRESS		경우
ILLEGAL DATA VALUE	ID	수신한 파라미터 데이터의 범위가 유효하지 않은 경우
		쓰기 허용이 안 되는 파라미터를 쓰기('W')하는
WRITE MODE ERROR	WM	경우(읽기 전용 파라미터, 운전 중에 운전 중 변경 금지
		파라미터)
FRAME ERROR	FE	프레임의 크기가 다를 경우

Character	Hex	Character	Hex	Character	Hex
А	41	q	71	@	40
В	42	r	72	[5B
С	43	S	73	١	5C
D	44	t	74]	5D
E	45	u	75		5E
F	46	v	76		5F
G	47	w	77		60
Н	48	х	78	{	7B
I	49	У	79		7C
J	4A	Z	7A	}	7D
K	4B	0	30	~	7E
L	4C	1	31	BEL	07
М	4D	2	32	BS	08
N	4E	3	33	CAN	18
0	4F	4	34	CR	0D
Р	50	5	35	DC1	11
Q	51	6	36	DC2	12
R	52	7	37	DC3	13
S	53	8	38	DC4	14
Т	54	9	39	DEL	7F
U	55	space	20	DLE	10
V	56	!	21	EM	19
W	57	"	22	ACK	06
Х	58	#	23	ENQ	05
Y	59	\$	24	EOT	04
Z	5A	%	25	ESC	1B
а	61	&	26	ETB	17
b	62	'	27	ETX	03
С	63	(28	FF	0C
d	64)	29	FS	1C
е	65	*	2A	GS	1D
f	66	+	2B	HT	09
g	67	,	2C	LF	0A
h	68	-	2D	NAK	15
i	69		2E	NUL	00
j	6A	/	2F	RS	1E
k	6B	:	ЗA	S1	0F
	6C	;	3B	SO	0E

7.3.6.5 ASCII 코드

Г

Character	Hex	Character	Hex	Character	Hex
m	6D	<	3C	SOH	01
n	6E	=	3D	STX	02
0	6F	>	3E	SUB	1A
р	70	?	3F	SYN	16
				US	1F
				VT	0B

7.3.7 모드버스-RTU(Modbus-RTU) 프로토콜

7.3.7.1 기능 코드/프로토콜

국번은 COM-01 Int485 St ID, Starting Address 는 통신 번지, 단위는 byte 입니다. 통신 번지는 363 페이지, 7.3.8 통신 호환 공통 영역 파라미터

를 참조하십시오.

Read Holding Register (Func. Code : 0x03) / Read Input Register (Func. Code :0x04)

인버터의 연속된 파라미터들을 정해진 개수만큼 읽기(최대 8 개) Read Holding Registers 와 Read Input Registers 는 인버터에서 동일하게 처리 Start Addr. : 읽고자 하는 인버터 파라미터(공통 영역 또는 키패드) 의 시작 주소-1 No. of Reg. : 읽고자 하는 인버터 파라미터(공통 영역 또는 키패드) 의 개수 Byte Count : No. of Reg 에 따른 정상 응답 Value 들의 byte 수 Except. Code : 에러 코드

<u>ਸ</u> -	구
------------	---

slave 국번	Func.	Start	Start	No of	No of	CRC	CRC
	Code	Addr (Hi)	Addr (Lo)	Reg (Hi)	Reg (Lo)	(Lo)	(Hi)
1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte

정상 응답

Slave	Func.	Byte	Value	Value	 Value	Value	CRC	CRC
국번	Code	Count	(Hi)	(Lo)	(Hi)	(Lo)	(Lo)	(Hi)
1 byte	 1 byte	1 byte	1 byte	1 byte				

* Value(Hi), Value(Lo)의 개수는 [요구 No. of Reg]에 따라 변화됩니다.

에러 응답

ſ

slave 국번	Func. Code	Except. Code	CRC(Lo)	CRC(Hi)
1 byte	1 byte	1 byte	1 byte	1 byte

* 에러 응답의 Func. Code 는 [요구 Func. Code] + 0x80 입니다.

Write Single Registers (Func. Code :0x06)

한 개의 인버터 파라미터 값을 쓰기 Addr.: 쓰고자 하는 인버터 파라미터(공통 영역 또는 키패드) 의 주소-1 Value: 쓰고자 하는 인버터 파라미터(공통 영역 또는 키패드) 의 값 Except. Code: 에러 코드

요구

slave 구버	Func.Code	Addr (Hi)	Addr(Lo)	Value(Hi)	Value(Lo)	CRC(Lo)	CRC(Hi)
1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte

정상 응답

Slave 국번	Func.Code	Addr (Hi)	Addr(Lo)	Value(Hi)	Value(Lo)	CRC(Lo)	CRC(Hi)
1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte

에러 응답

slave 국번	Func. Code	Except. Code	CRC(Lo)	CRC (Hi)
1 byte	1 byte	1 byte	1 byte	1 byte

* 에러 응답의 Func. Code 는 [요구 Func. Code] + 0x80 입니다.

Write Multiple Registers (Func. Code:0x10)

인버터의 연속된 파라미터들을 정해진 개수만큼 쓰기

전체 기능표 알아두기

Start Addr. : 쓰고자 하는 인버터 파라미터(공통 영역 또는 키패드) 의 시작 주소-1 No. of Reg. : 쓰고자 하는 인버터 파라미터(공통 영역 또는 키패드) 의 개수 Reg. Value : 쓰고자 하는 인버터 파라미터(공통 영역 또는 키패드) 의 값들 Except. Code : 에러 코드

요구

slave 국번	Func. Code	Start Addr. (Hi)	Start Addr. (Lo)	No of Reg. (Hi)	No of Reg. (Lo)	Byte Count	Reg. Value (Hi)	Reg. Value (Lo)	CRC (Lo)	CRC (Hi)
1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte

٦

정상 응답

slave 국번	Func.	Start	Start	No of	No of	CRC	CRC
	Code	Addr (Hi)	Addr (Lo)	Reg. (Hi)	Reg. (Lo)	(Lo)	(Hi)
1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte

에러 응답

slave 국번	Func. Code	Except. Code	CRC(Lo)	CRC(Hi)
1 byte	1 byte	1 byte	1 byte	1 byte

* 에러 응답의 Func. Code 는 [요구 Func. Code] + 0x80 입니다.

Exception Code

Code
01: ILLEGAL FUNCTION
02: ILLEGAL DATA ADRESS
03: ILLEGAL DATA VALUE
06: SLAVE DEVICE BUSY
14: Write-Protection

모드버스-RTU(Modbus-RTU) 통신 사용 예

인버터의 가속 시간(통신 번지 0x1103)을 5.0 초, 감속 시간(통신 번지 0x1104)을 10.0 초로 변경할 때의 예입니다.

항목	국번	Function	Starting Address	# of Registe r	Byte Count	데이터 값 1	데이터 값 2	CRC
Hex	0x01	0x10	0x1102	0x0002	0x04	0x0032	0x0064	0x1202
설명	COM-01 Int485 St ID	Preset Multiple Register	시작 통신 번지-1 (0x1103-1)	-	-	50 (가속 시간 5.0 초 해당)	100 (감속 시간 10.0 초 해당)	-

마스터가 인버터에게 전송하는 프레임

٢

인버터가 마스터에게 응답하는 프레임

항목	국번	Function	Starting Address	# of Register	CRC
Hex	0x01	0x10	0x1102	0x0002	0xE534
설명	COM-01 Int485 St ID	Preset Multiple Register	시작 통신 번지-1 (0x1103-1)	-	-

7.3.8 통신 호환 공통 영역 파라미터

iS5, iP5A, iV5, iG5A, S100 과 일부 호환되는 영역의 파라미터입니다.

(0h0000~0h0011 는 타제품과 공통영역, 0h0012~0h001B 는 H100 전용영역)

통신	파라미터	스케일	단위	R/W	상세 내용
0h0000	인버터 모델	-	-	R	F : H100
0h0001	인버터 용량	-	-	R	0: 0.75kW, 1: 1.5kW, 2: 2.2kW 3: 3.7kW 4: 5.5kW, 5: 7.5kW 6: 11kW, 7: 15kW, 8: 18.5kW 9: 22kW, 10: 30kW, 11: 37kW 12: 45kW ,13: 55kW, 14: 75kW, 15: 90kW, 16: 110kW, 17: 132kW 18: 160kW, 19: 185kW, 20: 220kW 21: 250kW, 22: 315kW, 23: 355kW 24: 400kW, 25: 500kW
0h0002	인버터 입력 전압	-	-	R	0: 220V 급, 1: 440V 급
0h0003	버전	-	-	R	(예제) 0h0064 : Version 1.00

통신	파라미터	스케일	단위	R/W	상세 내용	
					(예제) 0h006	5: Version 1.01
0h0004	Reserved	-	-	R	-	
0h0005	목표 주파수	0.01	Hz	R/W	-	
					B15	Reserved
					B14	0: Keypad Freq
				R	B13	2~8: 단자대 다단속
					B12	17: Up, 18: Down
					B11	19: STEADY
					B10	22: V1, 24: V2, 25: I2
						26: PULSE
					В9	27: 내장형 485
0h0006						28: 통신 옵션
	운전 지령(옵션)	-	-			30: JOG, 31: PID
					B8	0: Keypad
					B7	1: Fx/Rx-1
					B6	2: Fx/Rx-2
						3: 내상형 485
						4: 통신 옵션
						5 : Time Event
					B5	Reserved
					B4	비상 정지
					50	W: Trip 초기화(0 →1)
				R/\/	B3	R: Trip 상태
				1	B2	역방향 운전(R)
					B1	정방향 운전(F)
					B0	정지(S)
0h0007	가속 시간	0.1	sec	R/W	-	
0h0008	감속 시간	0.1	sec	R/W	-	
0h0009	출력 전류	0.1	A	R	-	
0h000A	출력 주파수	0.01	Hz	R	-	
0h000B	출력 전압	1	V	R	-	

통신	파라미터	스케일	단위	R/W	상세 내용	
0h000C	DC 링크 전압	1	V	R	-	
0h000D	출력 전력	0.1	kW	R	-	
					B15	0: HAND, 1:AUTO
						1: 주파수 지령
					B14	소스가 통신(내장형,
						Option)
					D 12	1: 운전 지령 소스가
					ыз	통신(내장형, Option)
					B12	역방향 운전 지령
					B11	정방향 운전 지령
				R E	B10	Reserved
	운전 상태	-	-		B9	조그 모드
0h000E					B8	감속 정지 중
					B7	직류 제동 중(DC Braking)
					B6	속도 도달
					B5	감속 중
					B4	가속 중
						Fault(Trip), OUT-
					B3	30 코드 설정값에
						따라 동작
					B2	역방향 운전 중
					B1	정방향 운전 중
					B0	정지
					B15	Reserved
					B14	Reserved
				_	B13	Reserved
0h000F	트딥 성보	-	-	R	B12	Reserved
					B11 P10	
						Roson <i>v</i> od
					DЭ	Reserved

Г

통신	파라미터	스케일	단위	R/W	상세 내용	
					B8	Reserved
					B7	Reserved
					B6	Reserved
					B5	Reserved
					B4	Reserved
					B3	Level Type 트립
					B2	Reserved
					B1	Reserved
					B0	Latch Type 트립
				R	B15 ~B7	Reserved
			-		B6	P7
					B5	P6
0h0010	이려 다자 정보	-			B4	P5
0110010					B3	P4
					B2	P3
					B1	P2
					B0	P1
			-		B15~B9	Reserved
					B8~B6	Reserved
						(확장 IO 연결 시 Relay 8~6)
					B5	Q1
0h0011	출력 단자 정보	-		R	B4	Relay 5
					B3	Relay 4
					B2	Relay 3
					B1	Relay 2
					B0	Relay 1
0h0012	V1	0.1	%	R	V1 전압 입르	
0h0013	Thermal	0.1	%	R	Thermal 입르	1
0h0014	V2	0.1	%	R	V2 전압 입르	4
0h0015	12	0.1	%	R	l2 전류 입력	
0h0016	모터 회전 속도	1	Rpm	R	현재 모터 호	 전 속도 표시
0h0017 ~ 0h0019	Reserved	-	-	-	-	
0h001A	Hz/Rpm 선택	-	-	R	0: Hz 단위, 1	:Rpm 단위

통신	파라미터	스케일	단위	R/W	상세 내용
0h001B	선택된 모터 극수 표시	-	-	R	선택된 모터 극수 표시

7.3.9 H100 확장 공통 영역 파라미터

Г

7.3.9.1 모니터 영역 파라미터(읽기만 가능)

통신 번지	파라미터	스케 일	단위	비트별 할	당 내용
0h0300	인버터 모델	-	-	H100: 000	Fh
0h0301	인버터 용량	-	-	0.75kW : 4 4022h, 3.7 7.5kW: 40 40F0h, 18 30kW: 411 42D0h, 55 90kW: 45/ 4840h, 16 220kW: 41 315kW: 53 5900h, 50	4008h, 1.5kW: 4015h, 2.2kW: 7kW: 4037h, 5.5kW: 4055h, 75h, 11kW: 40B0h, 15kW: .5kW: 4125h, 22kW: 4160h, E0h, 37kW: 4250h, 45kW: kW: 4370h, 75kW: 44B0h, A0h, 110kW: 46E0h, 132kW: 0kW: 4A00h, 185kW: 4B90h, DC0h, 250kW: 4FA0h, 3B0h, 355kW: 5630h, 400kW: 0kW: 5F40h
	인버터 입력 전압	-		200V 3 상 강냉식: 0231h	
0h0302	/전원 형태(단상, 3상)/냉각 방식		-	400V 3 상	강냉식: 0431h
060202	이비디 요소 비저			(예제) 0h0064: Version 1.00	
010303	인머더 5/11 미신	-	-	0h0	065: Version 1.01
0h0304	인버터 용량 (HP)	-	-	1HP: 4010h 2HP: 4020h ~ 800HP: 7200h Ex) 7200h – 4000h = 3200h (3200h -> 800)	
0h0305		-	-	B15	

통신 번지	파라미터	스케 일	단위	비트별 할	당 내용
				B14	0: 정상 상태
				B13	4: Warning 발생 상태
				B12	8: Fault 발생 상태
				B11 ~	
				B8	-
				B7	1: 속도 써치 중
				B6	2: 가속 중
				B5	3: 정속 중
	인버터의				4: 감속 중
	운전 상태			B4	5: 감속 정지 중
					6: H/W 전류 억제
					7: S/W 전류 억제
					8: 드웰 운전 중
				B3	0: 정지
				B2	.1: 정방향 운전 중
				B1	2: 역방향 운전 중
				B0	3: DC 운전 중
				B15	으저 지려 ㅅㅅ
				B14	군선 지정 포프 - 리케르
				віз B12	.0: 키배드
				B12	1: 통신 옵션
	이버터 우저			B10	3: 내장형 485
0h0306	고마스 지려 스스	-	-	B9	4: 단자대
	수파수 시덩 소스			B8	
				B7 B6	· ·주파수 지령 소스
				B0 B5	아 키패드 소드
				B4	
				B3	2~4: Up/Down 운선 속도

통신 번지	파라미터	스케 일	단위	비트별 힐	당 내용	
				B2	5: V1, 7: V2, 8: I2	
				B1	9: Pulse	
					10: 내상형 485	
				B0	11: 통신 옵션	
					13: Jog, 14: PID	
					25~31: 나난속 수파수	
0h0307	LCD 로더 S/W 버전	-	-	(예제) 0h0	064: Version 1.00	
0h0308	LCD 로더 타이틀 버전	-	-	(예제) 0h(0065: Version 1.01	
0h0309	IO Board Version	-	-	(예제) 0h0065: Version 1.01 0h0065: Version 1.01		
0h030A ~0h30F	Reserved	-	-	-		
0h0310	출력 전류	0.1	A	-		
0h0311	출력 주파수	0.01	Hz	-		
0h0312	출력 Rpm	0	Rpm	-		
0h0313	Reserved	-	-	-		
0h0314	출력 전압	1	V	-		
0h0315	DC 링크 전압	1	V	-		
0h0316	출력 전력	0.1	kW	-		
0h0317	Reserved	-	-	-		
0h0318	PID 레퍼런스	0.1	%	PID 레퍼	컨스 값	
0h0319	PID 피드백	0.1	%	PID 피드'	백 값	
0h031A	제 1 모터의 극수 표시	-	-	제 1 모터 극수 표시		
0h031B	제 2 모터의 극수 표시	-	-	제 2 모터	극수 표시	
0h031C	선택된 모터 극수 표시	-	-	선택된 모	터 극수 표시	

Г

통신 번지	파라미터	스케 일	단위	비트별 할당 내용	
0h031D	Hz/Rpm 선택	-	-	0: Hz 단우	l,1:Rpm 단위
0h031E ~ 0h031F	Reserved	-	-	-	
				B15~ B7	Reserved
				B6	P7(I/O 보드)
				B5	P6(I/O 보드)
0h0320	디지텈 입력 정보			B4	P5(I/O 보드)
0				B3	P4(I/O 보드)
				B2	P3(I/O 보드)
				B1	P2(I/O 보드)
				B0	P1(I/O 보드)
	디지털 출력 정보	-	-	B15~B9	Reserved
					Reserved
				B8~B6	(확장 IO 연결 시 Relay8~6)
				B5	Q1
0h0321				B4	Relay 5
				B3	Relay 4
				B2	Relay 3
				B1	Relay 2
				B0	Relay 1
				B15~ B8	Reserved
				B7	Virtual DI 8(COM-77)
				B6	Virtual DI 7(COM-76)
	가상 디지털 입력			B5	Virtual DI 6(COM-75)
0h0322	정보	-	-	B4	Virtual DI 5(COM-74)
				B3	Virtual DI 4(COM-73)
				B2	Virtual DI 3(COM-72)
				B1	Virtual DI 2(COM-71)
				B0	Virtual DI 1(COM-70)
0h0323	선택된 모터 표시	-	-	0: 제 1 도	

통신 번지	파라미터	스케 일	단위	비트별 할	당 내용	
0h0324	Al1	0.01	%	아날로그 보드)	아날로그 입력 V1 or Thermal(I/O 보드)	
0h0325	AI2	0.01	%	아날로그	입력 V2 or I2(I/O 보드)	
0h0326	Reserved	-	-	Reserved		
0h0327	Reserved	-	-	Reserved		
0h0328	AO1	0.01	%	아날로그	출력 1(I/O 보드)	
0h0329	AO2	0.01	%	아날로그	출력 2(I/O 보드)	
0h032A	Reserved	0.01	%	Reserved		
0h032B	Reserved	0.01	%	Reserved		
0h032C	Reserved	-	-	Reserved		
0h032D	Reserved	-	-	Reserved		
0h032E	사용전력(kWh)	0.1	kWh	사용전력 (kWh)		
0h032F	사용전력(MWh)	1	MWh	사용전력	(MWh)	
0h0330	래치 타입 트립 정보-1	-	-	B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0	PC Repeat Err Over Heat Trip Reserved External Trip Damper Err Pipe Broken NTC Open Reserved Reserved In Phase Open Out Phase Open Low Voltage2 E-Thermal Inverter OLT Under Load	
0h0331	래치 타입 트립 정보-2	-	-	B15 B14 B13 B12	Reserved MMC Interlock Reserved Reserved	

Г

통신 번지	파라미터	스케 일	단위	비트별 할	당 내용
				B11	Reserved
				B10	Option Trip-1
				B9	No Motor Trip
				B8	Reserved
				B7	IO Board Trip
				B6	Reserved
				B5	ParaWrite Trip
				B4	TB Trip
				B3	Fan Trip
				B2	Thermal Trip
				B1	Level Detect
				B0	Reserved
			-	B15~ B4	Reserved
060222				B3	Lost Keypad
000332	데넬 타입 드닙 징모	-		B2	Lost Command
				B1	Low Voltage
				B0	BX
0h0333	H/W Diagnosis Trip 정보	-	-	B15~ B3	Reserved
				B2	Watchdog-1 에러
				B1	EEP Err
				B0	ADC Offset
				B15	Broken Belt
				B14	Low Battery
				B13	Load Tune
				B12	Fan Exchange
				B11	CAP. Warning
0h0334	Warning 정보-1	-	-	B10	Level Detect
				B9	Reserved
				B8	Lost Keypad
				B7	Pipe Broken
				B6	Fire Mode

통신 번지	파라미터	스케 일	단위	비트별 할당 내용	
				B5	DB Warn %ED
				B4	Fan Warning
				B3	Lost Command
				B2	Inv Over Load
				B1	Under Load
				B0	Over Load
				B15	Reserved
				~	Reserved
				B4	Reserved
0h0335	래지 타입 트립 성보 -	-	-	B3	Overcurrent2 Trip
	3			B2	Overvoltage Trip
				B1	Overcurrent1 Trip
				B0	Ground Fault Trip
	Warning 정보-2	-	-	B15	Reserved
				~	Reserved
				B6	Reserved
				B5	Sleep
0h0336				B4	Inner Fan
				B3	H.O.A Lock
				B2	
				B1	Rs Tune Err
				B0	ParaWrite Fail
0h0337 ~0h0339	Reserved	-	-	Reserved	
0h033A	Proc PID Output	0.01	%	Process P	ID 출력값(%)
0h033B	Proc PID UnitScale Ref	Proc Unit	Proc Unit	Unit Scale	된 Process PID 레퍼런스
0h033C	Proc PID UnitScale Fdb	Proc Unit	Proc Unit	Unit Scale	된 Process PID 피드백 값
0h0340	On Time 날짜	0	Day	인버터가 전원이 켜져 있는 총 일수	
0h0341	On Time 분	0	Min	On time ♀	총 일수를 제외한 총 분
0h0342	Run Time 날짜	0	Day	인버터에서	서 모터를 구동한 총 일수

Г

통신 번지	파라미터	스케 일	단위	비트별 할당 내용
0h0343	Run Time 분	0	Min	Run time 의 총 일수를 제외한 총 분
0h0344	Fan Time 날짜	0	Day	방열판의 팬이 구동한 총 일수
0h0345	Fan Time 분	0	Min	Fan time 의 총 일수를 제외한 총 분
0h0346 ~0h0348	Reserved	-	-	Reserved
0h0349	Reserved	-	-	-
0h034A	Option 1	-	-	0: None, 5 : LonWorks
0h034B	Reserved	-	-	Reserved
0h034C	Reserved			Reserved
0h034D ~0h034F	Reserved	-	-	Reserved
0h0350	E-PID 1 Output	0.01	%	External PID 1 출력
0h0351	E-PID 1 Ref	0.1	%	External PID 1 레퍼런스 값
0h0352	E-PID 1 Fdb	0.1	%	External PID 1 피드백 값
0h0353	E-PID 1 Unit Scale Ref	Proc Unit	Proc Unit	Unit Scale 된 External PID 1 레퍼런스 값
0h0354	E-PID 1 Unit Scale Fdb	Proc Unit	Proc Unit	Unit Scale 된 External PID 1 피드백 값
0h0355	Reserved	-	-	Reserved
0h0356	Reserved	-	-	Reserved
0h0357	E-PID 2 Output	0.01	%	External PID 2 출력
0h0358	E-PID 2 Ref	0.1	%	External PID 2 레퍼런스 값
0h0359	E-PID 2 Fdb	0.1	%	External PID 2 피드백 값
0h035A	E-PID 2 Unit Scale Ref	Proc Unit	Proc Unit	Unit Scale 된 External PID 2 레퍼런스 값
0h035B	E-PID 2 Unit Scale Fdb	Proc Unit	Proc Unit	Unit Scale 된 External PID 2 피드백 값
0h035C	Applicaion Status	-	-	B15 Reserved ~B2

통신 번지	파라미터	스케 일	단위	비트별 할당 내용	
				B1	Fire Mode
				B0	Pump Clean
0h035D	Inv Temperature	0	°C	인버터 히트싱크 온도	
0h035E	Power Factor	0.1	-	출력 역률	
0h035F	Inv Fan Time	-	%	인버터 Fan 운전 시간(%)	
	MMC 운전 모터	-	-	B15	Reserved
				~	Reserved
				B5	Reserved
				B4	5 번 모터 운전
0h0360				B3	4 번 모터 운전
				B2	3 번 모터 운전
				B1	2 번 모터 운전
				B0	1 번 모터 운전

7.3.9.2 제어 영역 파라미터(읽기/쓰기 모두 가능)

Γ

통신 번지	파라미터	스케 일	단위	비트	별 할당 내용
0h0380	주파수 지령	0.01	Hz	목표 주파수 설정	
0h0381	Rpm 지령	1	Rpm	지령 Rpm 설정	
0h0382	운전 지령	-	-	B15 ~B4	Reserved
				B3	0 → 1: 프리 런 정지
				B2	0 → 1: 트립 초기화
				B1	0: 역방향 지령, 1: 정방향 지령
				B0	0: 정지 지령, 1: 런 지령

파라미터	스케 일	단위	비트별 할	당 내용
			예) 정방형	ᅣ 운전 지령:0003h,
			역방향 운	전 지령: 0001h
가속 시간	0.1	sec	가속 시간 설정	
감속 시간	0.1	sec	감속 시간	설정
			B15~B8	Reserved
			B7	Virtual DI 8(COM-77)
			B6	Virtual DI 7(COM-76)
가상 디지털 입력			B5	Virtual DI 6(COM-75)
제어	-	-	B4	Virtual DI 5(COM-74)
(0:Off, 1:On)			B3	Virtual DI 4(COM-73)
			B2	Virtual DI 3(COM-72)
			B1	Virtual DI 2(COM-71)
			B0	Virtual DI 1(COM-70)
디지털 출력 제어 (0:Off, 1:On)			B15~B9	Reserved
		-	B8~B6	Reserved
	-			(확장 IO 연결 시 Relay 8~6)
			B5	Q1
			B4	Relay 5
			B3	Relay 4
			B2	Relay 3
			B1	Relay 2
			B0	Relay 1
Reserved	-	-	Reserved	
PID 레퍼런스	0.1	%	Process PID 레퍼런스 통신 설정	
PID 피드백 값	0.1	%	Process PID 피드백 통신 설정	
모터 정격 전류	0.1	А	-	
모터 정격 전압	1	V	-	
Reserved	-	-	Reserved	
Proc PID Unit Reference	Proc Unit	Proc Unit	Unit Scale	된 Process PID 레퍼런스
			설정	
	파라미터 기속 시간 감속 시간 기상 디지털 입력 시아 (0:Off, 1:On) 지미 레퍼런스 PID 레퍼런스 PID 리퍼런스 모터 정격 전류 모터 정격 전류 모터 정격 전류 모터 정격 전문 Proc PID Unit Reference	파라미터스케 입기기속 시간0.1감속 시간0.1감속 시간가상 디지털 입력이, 이, 이	파라미터스케안위기지시기이1Sec기이1Sec기이1Sec기지Sec기지Sec기지Sec기지Sec기지Sec기지Sec기지Sec기지Sec기외Sec기외Sec기SecSec기SecSec기SecSec기SecSec기SecSec기SecSec기SecSec기SecSec기SecSec기SecSec기SecSec기SecSec기SecSec기SecSec기SecSec기SecSe	파라미터스케인위비용변 확기기기기이이00

통신 번지	파라미터	스케 일	단위	비트별 할당 내용
0h038F	Proc PID Unit Feedback	Proc Unit	Proc Unit	Unit Scale 된 Process PID 피드백 설정
0h0390~ 0h0399	Reserved	-	-	Reserved
0h039A	Anytime Para	-	-	CNF-20 코드 값을 설정(308 페이지, 5.49 운전 상태 모니터 참조)
0h039B	Monitor Line-1	-	-	CNF-21 코드 값을 설정(308 페이지, 5.49 운전 상태 모니터 참조)
0h039C	Monitor Line-2	-	-	CNF-22 코드 값을 설정(308 페이지, 5.49 운전 상태 모니터 참조)
0h039D	Monitor Line-3	-	-	CNF-23 코드 값을 설정(308 페이지, 5.49 운전 상태 모니터 참조)
0h039E ~0h039F	Reserved			Reserved
0h03A0	PID Ref 1 Aux Value	0.1	%	PID Aux 1 레퍼런스 설정
0h03A1	PID Ref 2 Aux Value	0.1	%	PID Aux 2 레퍼런스 설정
0h03A2	PID Feedback Aux Value	0.1	%	PID Aux 피드백 설정
0h03A3	Proc PID Aux 1 Unit Scale	Proc Unit	Proc Unit	Unit Scale 된 PID Aux 1 레퍼런스 설정
0h03A4	Proc PID Aux 2 Unit Scale	Proc Unit	Proc Unit	Unit Scale 된 PID Aux 2 레퍼런스 설정
0h03A5	Proc PID Fdb Aux Unit Scale	Proc Unit	Proc Unit	Unit Scale 된 PID Aux 피드백 설정
0h03A6 ~0h03AF	Reserved			Reserved
0h03B0	E-PID 1 Ref	0.1	%	External PID 1 레퍼런스 설정
0h03B1	E-PID 1 Fdb	0.1	%	External PID 1 피드백 설정
0h03B2	E-PID 1 Unit Scale Ref	Proc Unit	Proc Unit	Unit Scale 된 External PID 1 레퍼런스 설정

Γ
통신 번지	파라미터	스케 일	단위	비트별 할당 내용
0h03B3	E-PID 1 Unit Scale Fdb	Proc Unit	Proc Unit	Unit Scale 된 External PID 1 피드백 설정
0h03B4	Reserved			Reserved
0h03B5	E-PID 2 Ref	0.1	%	External PID 2 레퍼런스 설정
0h03B6	E-PID 2 Fdb	0.1	%	External PID 2 피드백 설정
0h03B7	E-PID 2 Unit Scale Ref	Proc Unit	Proc Unit	Unit Scale 된 External PID 2 레퍼런스 설정
0h03B8	E-PID 2 Unit Scale Fdb	Proc Unit	Proc Unit	Unit Scale 된 External PID 2 피드백 설정

참고

H100 공통 영역 주파수 번지(0h0380, 0h0005)에 통신으로 설정된 주파수는 파라미터를 저장(Parameter Save)해도 저장되지 않습니다. 통신으로 설정한 주파수를 인버터 전원을 껐다가 켠 이후 계속해서 사용하려면 아래와 같이 설정하십시오.

- 1 DRV-07 코드를 1(Keypad-1)로 설정한 후, 임의의 목표 주파수를 설정하십시오.
- 2 H100 파라미터 영역 주파수 번지(0h1101)에 통신으로 주파수를 설정하십시오.
- 3 전원을 끄기 전 0h03E0 번지에서 1을 설정하여 파라미터를 저장하십시오. 전원을 껐다가 켰을 때 통신으로 설정 저장된 주파수가 나타납니다.

7.3.9.3 메모리 제어 영역 파라미터(읽기/쓰기 모두 가능)

통신 번지	파라미터	스케 일	단위	운전 중 변경	기능
0h03E0	파라미터 저장	-	-	Х	0: No, 1:Yes
0h03E1	모니터 모드 초기화	-	-	0	0: No, 1:Yes

통신 번지	파라미터	스케 일	단위	운전 중 변경	기능		
0h03E2	파라미터 초기화	-	-	x	0: No, 1: All Grp 2: Drv Grp 3: BAS Grp 4: ADV Grp 5:CON Grp 6:IN Grp 7:OUT Grp 8: COM Grp 9:PID Grp	10:EPID Grp 11:AP1 Grp 12:AP2 Grp 13:AP3 Grp 14:PRT Grp 15:M2 Grp Trip 발생 중에는 설정 금지	
0h03E3	변경된 파라미터 표시	-	-	0	0: No, 1:Yes		
0h03E4	매크로 기능 항목	-	-	x	0: BASIC 1:Compressor 2:Supply Fan 3:Exhaust Fan 4:Cooling Tower 5:Circul. Pump 6:Vacuum Pump 7:Constant Torg		
0h03E5	고장 이력 모두 삭제	-	-	0	0: No, 1:Yes		
0h03E6	사용자 등록 코드 삭제	-	-	0	0: No, 1:Yes		
0h03E7	파라미터 모드 숙김	0	Hex	0	쓰기: 0~9999)	
				-	읽기: 0: Unlo	ck, 1:Lock	
0h03E8	파라미터 변경 잠금	0	Hex	0	쓰기: 0~9999)	
					읽기: 0: Unlo	ck, 1:Lock	
0h03E9	죄초 파라미터 간편 설정	-	-	0	0: No, 1:Yes		
0h03EA	사용 전력량 초기화	-	-	0	0: No, 1:Yes		

Г

통신 번지	파라미터	스케 일	단위	운전 중 변경	기능
0h03EB	인버터 운전 누적 시간 초기화	-	-	0	0: No, 1:Yes
0h03EC	냉각 팬 운전 누적 시간 초기화	-	-	0	0: No, 1:Yes

참고

- 인버터 메모리 제어 영역에서 파라미터 설정 시 설정 값은 인버터에 반영된 후 저장됩니다. 다른 영역의 파라미터는 통신으로 설정할 때 설정 값이 반영되지만 저장되지는 않습니다. 즉, 인버터의 전원을 끄고 다시 켜면 통신으로 설정한 값은 모두 지워지고 설정 이전의 값으로 돌아가게 됩니다.
 따라서 다른 영역의 파라미터를 통신으로 설정한 후에는 인버터의 전원을 끄기 전에 반드시 파라미터를 저장해야 합니다. 하지만 인버터 메모리 제어 영역에서는 파라미터를 저장할 필요가 없으며, 설정이 완료되면 즉시 인버터에 해당 값이 저장됩니다
- 메모리 제어 영역 파라미터는 신중하게 설정하십시오. 통신으로 파라미터를 설정할 때에는 먼저 값을 0으로 설정한 후 다른 값으로 설정해야 합니다. 만일 0이 아닌 값으로 설정되어 있는 상태에서 또다시 0이 아닌 값을 입력하면 에러 메시지로 응답하며 이 파라미터를 통신으로 읽어 보면 이전에 설정했던 값이 읽혀집니다.
- Oh03E7, Oh03E8 번지는 암호를 입력하는 파라미터입니다. 먼저 암호를 입력하면 잠금(Lock) 상태에서는 잠금 해제(Unlock) 상태가 되고 잠금 해제(Unlock) 상태에서 암호를 입력하면 잠금(Lock) 상태가 됩니다. 또한, 같은 암호 값을 연속으로 입력하면 최초 한 번만 파라미터가 잠금(Lock) 또는 잠금 해제(Unlock) 설정이 실행되며 그 후의 값은 반영되지 않습니다. 그러므로 한번 더 같은 값으로 입력하려면 0으로 변경한 다음, 이전 값을 입력하십시오.

예) 244 를 두 번 입력하려면 244 → 0 → 244 순서로 입력합니다.

- 통신환경이 공장 초기값(Modbus-RTU, 9600bps, D8/PN/S1) 이외의 상태에서 0h03E2 번지의 [1: All Grp] 또는 [8: COM Grp]을 Set 하여 초기화 하거나, 0h03E4 번지를 통해 매크로 기능 항목을 변경하는 경우 통신 관련 파라미터 설정 값들이 공장 초기값으로 초기화 되어 통신 환경이 변화가 되므로 상위 제어기에서 통신 응답을 제대로 수신 하지 못 할 수 있습니다.
- 공통 영역에 정의되어 있는 2개 이상의 연속된 데이터를 읽기 위한 주소 번지 중 정의되어 있지 않은 (Reserved 된 주소번지)번지가 포함 되어 있는 경우, 정의되어 있지 않은 주소 번지는 0xFFFF 로 응답하며 다른 주소 번지는 정상적으로 값을 응답합니다. 데이터를 읽기 위한 주소 번지가 모두 정의 되어 있지 않은 번지일 경우 첫 번째 주소에 해당하는 에러를 응답합니다.
- 공통 영역에 정의되어 있는 2개 이상의 연속된 데이터를 쓰기 위한 주소 번지 중 정의되어 있지 않은 (Reserved 된 주소번지)번지가 포함 되어 있는 경우 혹은 쓰고자 하는 값이 유효하지 않은 데이터일 경우 쓰기 동작에 있어서 에러 응답이 발생하지는 않습니다. 정의되어 있지 않은 주소에 쓰려고 했거나 유효하지 않은 데이터를 쓰려고 했던 동작은 수행되지 않습니다. 데이터를 쓰기위한 주소 모두가 정의되어 있지 않은 주소거나 데이터가 모두 유효하지 않은 경우 첫번째 주소에 해당되는 에러를 응답합니다.

① 주의

Г

인버터 메모리 제어 영역 파라미터를 사용할 때에는 인버터에 데이터를 저장하게 되므로,

동작 수행 시간이 길어져 통신이 끊어질 수 있으니 주의하십시오.

7.4 BACnet 통신

7.4.1 BACnet 통신 일반

BACnet은 Building Automation and Control network를 뜻하며 빌딩 자동화에서 많이 사용이 되는 통신 프로토콜입니다.

BACnet은 시스템의 유연성을 위해 Object-Oriented 개념을 도입했습니다. 표준화된 객체를 정의하고 모든 데이터는 이 Object를 이용해 자료를 교환 함으로써, 서로 다른 제조 업체에서 만든 제품 상호간에도 원활한 통신이 가능하게 합니다. 그리고 이렇게 정의된 Object에 접속(Access)하여 동작하는 서비스(Service)중 일반적으로 사용되는 것들을 표준화 하고 있습니다.

7.4.2 BACnet 통신 규격

	Interface	5Pin Pluggable connector
Connection	Data 전송 방법	RS-485 MS/TP, Half-duplex
	Cable	Twisted pair (1 pair and shield)
		ANSI/ASHRAE Standards 135-2004
	BACnet MS/TP	기술 되어 있음
Communication	Baud Rate	9600, 19200, 38400, 76800 bps 지원
	MAC Address	1~127
	Start/Stop bit	Start 1bit, Stop 1/2bit
	Parity check	None/Even/Odd

7.4.3 BACnet Quick Communication Start

다음과 같은 절차에 의해 BACnet 통신 설정을 진행합니다.

- COM-02 파라미터가 "BACnet"인지 확인합니다.
- COM-03 Int485 BaudR 를 설정합니다.

• COM-04 Int485 Mode 를 설정 합니다.

٢

- COM-84,85Device Object Instance 를 설정합니다.
- COM-84, COM-85 에 값을 설정합니다. Device Object Instance 는 반드시 고유한 값이어야 합니다.
- COM-01 Int485 St ID 를 설정합니다. COM-01 Int485 St ID 를 BACnet 에서 사용하기 위해서는 0~127 이내의 값을 입력해야만 합니다.
- MS/TP token passing 을 하기 위해서 COM-01 Int485 St ID 는 다른 Master 의 Max Master Property 에 의해 정의한 제한 값 이내 값이어야 합니다.
- BACnet 통신이 제대로 되는지 확인합니다.

그룹	코드	명칭	LCD 표시	설정 값	설정 범위	단위
СОМ	03	통신 속도	Baudrate	9600 bps	0 1200 ¹⁾ 1 2400 ¹⁾ 2 4800 ¹⁾ 3 9600 4 19200 5 38400 6 57600 ¹⁾ 7 76800 8 115200 ¹⁾	
	04	통신 모드	Int485 Mode	D8/PN/S1	 0 D8/PN/S1 1 D8/PN/S2 2 D8/PE/S1 3 D8/PO/S1 	
	83	BAC net 최대 마스터 수	BAC Max Master	0	0~127	-
	84	BAC net 디바이스 번호 1	BAC Dev Inst1	237	0~4149	-
	85	BAC net 디바이스 번호 2	BAC Dev Inst1	0	0~999	-
	86	BAC net 디바이스 잠금 번호	BAC PassWord	0	0~32767	-

1) BACnet 통신인 경우에는 통신 속도 설정에서 1200bps, 2400bps, 4800bps, 57600bps, 115200bps 는 설정이 불가합니다.

BACnet 파라미터 설정 상세

코드 및 기능	설명			
	BACnet에서 쓰이게 되는 MAC ID 설정 파라미터 입니다. 모든			
	BACnet을 이용하는 인버터의 MAC ID는 BUS에 연결되기 전에			
COM-01 Int485	설정을 해주어야 합니다. MAC ID는 연결하고자 하는 Network에서			
ST ID(MAC ID)	고유한 값을 가져야 합니다. BACnet로 이용할 경우 0~127이내의			
	값으로 사용해야 하며, 이 범위 이외의 값을 이용할 경우 통신이			
	되지 않습니다.			
COM-03 Baud	네트웍에서 사용할 통신 속도를 설정하는 파라미터입니다.			
Rate	Default로 9600bps 입니다.			
COM-83 BAC	현재 통신 Line에 연결되어 있는 장치의 개수인 Max Master의			
Mas Master	Range는 1~127이고 초기값은 127 입니다.			
	BACnet Device Instance는 BACnet Device를 식별하기 위해			
	사용되기 때문에 전체 BACnet 네트웍에서 유일한 값으로 설정해야			
	합니다. 설치하는 동안 다른 Device들 중에서 BACnet Device를			
	찾는데 편리하게 사용이 됩니다.			
Dev Inst 1~2	Device Instance는 (COM-84 X 1000) + COM-85 의 값으로 적용이			
	됩니다. 즉, COM-84은 Device Instance 천이상의 자리의 값이고			
	COM-85는 백 이하의 자리 수의 값이 됩니다.			
	Device Instance는 0~4,194,302 의 값을 가질 수 가 있으므로			
	COM-84은 0~4194, COM-85는 0~999까지의 Range를 가집니다.			
	Warm/Cold Start 시 사용하는 Password입니다. COM-86 Password			
	파라미터는 0~32767까지 설정이 가능하고 초기값은 0입니다. 이			
	파라미터의 설정값을 1~32768을 설정 하면 BACnet Master에서			
COM-86 BAC	Warm/Cold Start를 할 때 반드시 BACnet Master에서 설정한			
Password	Password값과 COM-86에 설정한 값이 일치해야만 Warm/Cold			
	Start가 수행이 됩니다.			
	COM-86 Password를 0으로 설정을 하면 BACnet Master의			
	Password을 무시하고 항상 Warm/Cold Start가 수행이 됩니다.			

٦

참고) MaxMaster 와 MAC ID 는 Network 통신 수행에 큰 영향을 미칩니다. MaxMaster 는 가능한 작은 값을 설정하는 것이 좋습니다. MAC ID 는 연속된 값으로 설정하는 것이

좋습니다. 각각의 Master 는 자신의 (MAC ID +1)로 설정된 Device 에게 Token 을 주려고 하기 때문에 위에서 설명 했듯이 Max Master 를 가능한 작게 하고, MAC ID 는 연속적인 값을 설정하면 효과적인 Token Passing Configuration 이 될 수 있습니다.

7.4.4 Protocol Implement

(1) H100 BACnet이 제공하는 Service

- ✓ I-Am (Who-Is에 대한 응답, Power-up 후의 Broadcast 혹은 Reset 시)
- ✓ I-Have (Who-Has 대한 응답)
- ✓ ReadProperty
- ✓ WriteProperty
- ✓ DeviceCommunicationControl
 - DeviceCommunicationControl에서 Password 무시함
- ✓ ReinitalizeDevice
 - Warm/Cold Start 지원함(Password 지원함)
 - Start Backup, End Backup, Start Restore, End Restore, Abort Restore 지원 하지 않음

(2) Data Link Layer

✓ BACnet 통신 카드는 MS/TP Master Data Link Layer를 수행합니다. 모든 표준 MS/TP는 9600, 19200, 38400, 76800 bps를 제공합니다.

(3) MAC ID/Device Object Instance

- ✓ COM-01 Int485 ST ID(MAC ID)를 설정합니다.
- ✓ COM-84, COM-85에서 Device Object Instance를 설정합니다.

(4) Max Master Property

✓ COM-83 Max Master 값을 설정 함으로써 Device Object Max Master Property Configuration이 가능합니다.

7.4.5 Object Map

	Object Type							
Property	Devic e	BI	BV	AI	AO	MSI	MVI	
Object Identifier	0	0	0	0	0	0	0	

	Object	Туре					
Property	Devic	BI	BV	AI	AO	MSI	MVI
	e	-					
Object Name	0	0	0	0	0	0	0
Object Type	0	0	0	0	0	0	0
System Status	0						
Vendor Name	0						
Vendor Identifier	0						
Model Name	0						
Firmware Revision	0						
Appl Software Revision	0						
Location	0						
Protocol Version	0						
Protocol Revision	0						
Services Supported	0						
Object Types Supported	0						
Object List	0						
Max APDU Length	0						
APDU Timeout	0						
Number APDU Retries	0						
Max Master	0						
Max Info Frames	0						
Device Address Binding	0						
Database Revision	0						
Preset Value		0	0	0	0	0	0
Description	0	0	0	0	0	0	0
Status Flags		0	0	0	0	0	0
Event State		0	0	0	0	0	0
Reliability		0	0	0	0	0	0
Out-of-Service		0	0	0	0	0	0
Number of states						0	0
State text						0	0
Units				0	0		
Polarity		0					
Active Text		0	0				
Inactive Text		0	0				
	I	. <u> </u>	-	1	1	1	<u> </u>

BI – Binary Input

BV – Binary Value

AI – Analog Input

AV – Analog Value

MSI – Multistate Input

MSV – Multistate Value

Location과 Description(Device Object에만 해당함)은 Read/Write 모두 가능하고 Write 시 최대 29개의 글씨를 Write 가능합니다.

Instance ID	Object Name	Description	Range	Units	R/W
AV1	CommTimeoutSet	지령 상실 시간 설정	0.1~120.0	Secs	R/W
AV2	AccelTimeSet	가속 시간 설정*	0.0~600.0	Secs	R/W
AV3	DecelTimeSet	감속 시간 설정*	0.0~600.0	Secs	R/W
AV4	CommandFreqSet	지령 주파수 설정**	0.00~DRV-20	Hz	R/W
AV5	PIDReferenceSet	PID Reference Set	0~100.0	%	R/W
AV6	PIDFeedbackSet	PID Feedback Set	0~100.0	%	R/W

7.4.5.1 Analog Value Object Instance

① 주의

ſ

- PowerOn Resume (COM-96)가 YES이면 인버터에 파워가 끊겨도 값을 저장하며 PowerOn Resume (COM-96)가 NO일때는 인버터에 파워가 끊기면 값은 저장되지 않습니다
- 최대 주파수(DRV-20)보다 더 높은 값을 설정할 수 없습니다. 최대주파수는 키패드를 통해서 설정할 수 있습니다. Freq Ref Src (DRV-07)가 Int 485로 설정되어 있어야 이 값을 사용할 수 있습니다. PowerOn Resume (COM-96)가 YES이면 인버터의 파워가 끊겨도 값을 저장하며 PowerOn Resume (COM-96)가 NO일때는 인버터에 파워가 끊기면 값은 저장되지 않습니다.
- AV2, AV3, AV4는 주파수 가/감속 및 지령주파수 설정으로 인버터 AUTO 모드에서만 쓰기가 가능합니다.

7.4.5.2 MultiState Value Object Instance

Instance ID	Object Name	Description	Range	Units	R/W
MSV1	LostCommand	지령 상실 동작 설정	0: None 1: FreeRun 2: Dec 3: HoldInput 4: HoldOutput 5: LostPreset	MSG	R/W

Instance ID	Object Name	Description	Active / Inactive Text	R/W
BV1	StopCmd	정지명령	False/True	R/W
BV2	RunForwardCmd	정방향 운전명령	False/True	R/W
BV3	RunReverseCmd	역방향 운전 명령	False/True	R/W
BV4	ResetFaultCmd	Fault 리셋 명령	False/True	R/W
BV5	FreeRunStopCmd	Free-Run 정지 명령	False/True	R/W
BV6	Relay1Cmd	Relay 1 On/Off 명령	False/True	R/W
BV7	Relay2Cmd	Relay 2 On/Off 명령	False/True	R/W
BV8	Relay3Cmd	Relay 3 On/Off 명령	False/True	R/W
BV9	Relay4Cmd	Relay 4 On/Off 명령	False/True	R/W
BV10	Relay5Cmd	Relay 5 On/Off 명령	False/True	R/W
BV11	Q1Cmd	Q1On/Off 명령	False/True	R/W

7.4.5.3 Binary Value Object Instance

7.4.5.4 Analog Input Object Instance

Instance ID	Object Name	Description	Units	R/W
Al1	InvCap(kW)	인버터 용량(kW)	kW	R
Al2	InvCap(HP)	인버터 용량(HP)	HP	R
Al3	InvVoltageClass	인버터 전압 타입	Volts	R
Al4	OutputCurrent	출력 전류	Amps	R
AI5	OutputFreq	출력 주파수	Hz	R
Al6	OutputVolgate	출력 전압	Volts	R
AI7	DCLinkVoltage	DC Link 전압	Volts	R
Al8	OutputPower	출력 Power	kW	R
Al9	Al1	아날로그1 값	%	R
Al10	AI2	아날로그2 값	%	R
Al11	OutputRPM	출력 속도	RPM	R
Al12	Pole	모터 극수	-	R

Instance ID	Object Name	Description	Units	R/W
A14.2	In Status	인버터 상태 정보		R
AIIS	Involatus	(공통영역 0h0305 번지 참조) ^(주1)	-	
A 14 4	Latah Triplata 1	래치 타입 트립 정보1		R
AII4	Laten inpinio i	(공통영역 0h0330 번지 참조) ^(주1)	-	
A14 E	래치 타입 트립 정보2			Б
AII5	Laten inpinioz	(공통영역 0h0331 번지 참조) ^(주1)	- - -	ĸ
A14.0	Leteb Triplete 2	래치 타입 트립 정보3		R
AITO	Laten i ripinio3	(공통영역 0h0335 번지 참조) ^(주1)	-	
A 14 7	L evelTriplete	레벨 타입 트립 정보		R
AIT/	LevelTripInfo	(공통영역 0h0332 번지 참조) ^(주1)	-	
Al18		H/W Diagnosis 트립 정보		R
	HVVDIaginio	(공통영역 0h0333 번지 참조) ^(주1)	-	
A140	Marcinglato	Warning 정보		R
AII9	vvaminginio	(공통영역 0h0334 번지 참조) ^(주1)	-	
AI20	KiloWattHour	출력 Power (KW/h)	KW/h	R
Al21	MegaWattHour	출력 Power (MW/h)	MW/h	R
AI22	PowerFactor	역률	-	R
AI23	RunTimeDay	운전시간(Day)	Day	R
Al24	RunTimeMin	운전시간(Min)	Day	R
AI25	PidOutValue	PID Output Value	%	R
AI26	PidReferenceValue	PID Reference Value	%	R
AI27	PidFeedbackValue	PID Feedback Value	%	R

(주1): [7.3.8 통신 호환 공통 영역 파라메터]의 통신 번지를 확인 하시기 바랍니다.

7.4.5.5 Binary Input Object Instance

Γ

Instance ID	Object Name	Description	R/W
BI1	Stopped	정지 상태	R
BI2	RunningForward	정방향 운전중	R
BI3	RunningReverse	역방향 운전중	R

Instance ID	Object Name	Description	R/W
BI4	Tripped	Trip 발생 상태	R
BI5	Accelerating	가속중	R
BI6	Decelerating	감속중	R
BI7	SteadySpeed	정속 운전중	R
BI8	RunningDC	0속 운전중	R
BI9	Stopping	정지중	R
BI10	FwdRunCommandState	정방향 운전명령 상태	R
BI11	RevRunCommandState	역방향 운전명령 상태	R
BI12	P1	P1 상태	R
BI13	P2	P2 상태	R
BI14	P3	P3 상태	R
BI15	P4	P4 상태	R
BI16	P5	P5 상태	R
BI17	P6	P6 상태	R
BI18	P7	P7 상태	R
BI19	Relay1	Relay1 상태*	R
BI20	Relay2	Relay2 상태*	R
BI21	Relay3	Relay3 상태*	R
BI22	Relay4	Relay4 상태*	R
BI23	Relay5	Relay5 상태*	R
BI24	Q1	Q1 상태	R
BI25	SpeedSearch	SpeedSearch 운전중	R
BI26	HWOCS	H/W OCS 발생 상태	R
BI27	SWOCS	SW OCS 발생 상태	R
BI28	RunningDwell	Dwell 운전 상태	R
BI29	SteadyState	정상 상태	R
BI30	Warning	경고 상태	R

①주의

• 통신으로 Relay 출력을 제어하기 위해서는,OUT-31~35 Relay1~5의 파라미터 설정이

0:none로 되어 있어야 합니다.

ſ

7.4.5.6 MultiState Input Object Instance

Instance ID	Object Name	Description	Units	R/W
MSI1	UnitsDisplay	Unit 설정 상태	1 Hz 2 RPM	R

7.4.5.7 Error Massage

Display	Description
serviceserror+7	inconsistentparameters
propertyerror+9	Invalid Data Type
serviceserror+10	invalidaccessmethod
serviceserror+11	invalidfilestart
serviceserror+29	servicerequestdenied
objecterror+31	unknownobject
propertyerror+0	propertyother
propertyerror+27	readaccessdenied
propertyerror+32	unknownproperty
propertyerror+37	valueoutofrange
propertyerror+40	writeaccessdenied
propertyerror+42	invalidarrayindex
clienterror+31	unknowndevice
resourceserror+0	resourcesother
clienterror+30	timeout
abortreason+4	segmentationnotsupported
rejectreason+4	invalidtag
clienterror+0xFF	noinvokeid
securityerror+26	passwordfailure

7.5 Metasys-N2 통신

7.5.1 Metasys-N2 Quick Communication Start

다음과 같은 절차에 의해 Metasys-N2 통신 설정을 진행합니다.

- COM-02 파라미터가 "Metasys-N2"인지 확인합니다.
- Metasys-N2 의 통신속도는 "9600bps"로 고정 입니다.
- Meyasys-N2 의 통신 모드는 Data Bit 8, No Parity Bit, Start Bit 1, Stop Bit 1 으로 고정입니다.

٦

• Metasys-N2 통신이 제대로 되는지 확인합니다.

항 목	규 격
통신 속도	9600 bps
제어 절차	비동기 통신 체계
통신 체계	Half duplex system
Cable	Twisted pair (1 pair and shield)
	LS485 : ASCII(8bit)
문자 체계	Modbus-RTU : Binary (7/8 bit)
	Metasys-N2 : ASCII(8bit)
Start/Stop bit	Start 1bit, Stop 1bit
	RS485 : Checksum(2byte)
Error check	Modbus-RTU : CRC16(2byte)
	Metastys-N2 : CRC16(2byte)
Parity check	None

7.5.2 Metasys-N2 통신 규격

7.5.3 Metasys-N2 프로토콜 I/O Point Map

7.5.3.1 Analog Output

Metasys-N2 마스터로부터 인버터를 제어하는 Ouput 포인트 맵

No.	Name		Range		Description	
AO1	Command Frequency	0.0	0.0 ~ Max Freq		지령 주파수 설정**	
AO2	Accel Time	0.0	~ 600.0	Sec	가속 시간 설정*	
AO3	Decel Time	0.0	~ 600.0	Sec	감속 시간 설정*	
		0	KeyPad		운전 모드를 설정합니다.	
		1	Fx/Rx-1			
0.04	Drive mede	2	: Fx/Rx-2			
A04	Drive mode	3	Int. 485	-		
		4	FieldBus			
		5	Time Event			
		0	– KeyPad-1		주파수 모드를 설정합니다.	
		1	– KeyPad-2			
		2	V1			
		3	 Reversed 			
A05	Freq mode	4	V2	_		
AOJ	i leq mode	5	12	-		
		6	Int485			
		7	FieldBus			
		8	Reversed			
		9	Pulse			

① 주의

- PowerOn Resume (COM-96)가 YES이면 인버터에 파워가 끊겨도 값을 저장하며 PowerOn Resume (COM-96)가 NO일때는 인버터에 파워가 끊기면 값은 저장되지 않습니다
- 최대 주파수(DRV-20)보다 더 높은 값을 설정할 수 없습니다. 최대주파수는 키패드를 통해서 설정할 수 있습니다. Freq Ref Src (DRV-07)가 Int 485로 설정되어 있어야 이 값을 사용할 수 있습니다. PowerOn Resume (COM-96)가 YES이면 인버터의 파워가 끊겨도 값을 저장하며 PowerOn Resume (COM-96)가 NO일때는 인버터에 파워가 끊기면 값은 저장되지 않습니다.

7.5.3.2 Binary Output

Metasys-N2 마스터로부터 인버터를 제어하는 Ouput 포인트 맵

No.	Name	Range	Description
BO1	Stop Command	1 : Stop	정지 명령
BO2	Run Forward Command	1 : Forward Run	정방향 운전 명령
BO3	Run Reverse Command	1 : Reverse Run	역방향 운전 명령
BO4	Reset Fault	1 : Reset	Fault Reset 명령
BO5	Free-Run Stop	1 : Bx	Free-Run Stop 명령

7.5.3.3 Analog Input

Metasys-N2 마스터가 인버터의 상태를 모니터링한다.

No.	Name	Unit	Description
Al1	Output Current	Amps	출력 전류
Al2	Output Frequency	Hz	출력 주파수
AI3	Output Speed	RPM	출력 속도
Al4	Trip Code	-	트립 정보 (공통영역 0h000F 번지 참조) ^(주1)
AI5	Latch Trip Info1	-	래치 타입 트립 정보1 (공통영역 0h0330 번지 참조) ^(주1)
AIG	Latab Trip Infa?		래치 타입 트립 정보2
AIO	Laton mp moz	-	(공통영역 0h0331 번지 참조) ^(주1)
AI7	Latch Trip Info3	-	래치 타입 트립 정보3(공통영역 0h0335 번지 참조) ^(주1)
Al8	Level Trip Info	-	레벨 타입 트립 정보 (공통영역 0h0332 번지 참조) ^(주1)
A10	H/W Diagnosis		H/W Diagnosis 트립 정보
AI9	Trip Info	-	(공통영역 0h0333 번지 참조) ^(주1)
Al1 0	Warning Info	-	Warning 정보 (공통영역 0h0334 번지 참조) ^(주1)

(주1): [7.3.8 통신 호환 공통 영역 파라메터]의 통신 번지를 확인 하시기 바랍니다.

7.5.3.4 Binary Input

No.	Name	Description
BI1	Stopped	1 - 정지 상태
BI2	Running Forward	1 - 정방향 운전중
BI3	Running Reverse	1 - 역방향 운전중
BI4	Tripped	1-Trip 발생 상태
BI5	Accelerating	1 - 가속중
BI6	Decelerating	1 - 감속중
BI7	Reached Full Speed	1 - 정속중
BI8	DC Braking	1 - DC운전중
BI9	Stopping	1 – 정지중
BI10	P1 Input	1 – True / 0 - False
BI11	P2 Input	1 – True / 0 – False
BI12	P3 Input	1 – True / 0 – False
BI13	P4 Input	1 – True / 0 – False
BI14	P5 Input	1 – True / 0 – False
BI15	P6 Input	1 – True / 0 – False
BI16	P7 Input	1 – True / 0 – False
BI17	Relay1 State	1 – On / 0 - Off
BI18	Relay2 State	1 – On / 0 - Off
BI19	Relay3 State	1 – On / 0 - Off
BI20	Relay4 State	1 – On / 0 - Off
BI21	Relay5 State	1 – On / 0 - Off
BI22	Q1 (OC1) State	1 – On / 0 - Off

7.5.3.5 Error Code

Г

Defined Codes	Description
00	Device가 reset상태이며 현재 "Identity Yourself: command를 기다리고 있다.
01	정의되지 않은 command
02	Check sum error
03	입력버퍼 초과(디바이스가 받을수 있는 버퍼크기보다 긴 메시지)
05	Data field error(현재 메시지 크기가 command type에 맞지 않음)
10	Invalid data(메시지 값이 허용범위를 초과하는 경우)
11	Invalid command for data type(message frame에 맞지 않은 command)

Defined Codes	Description
10	Command not accepted(Device자체 문제로 command를 무시, 이때
12	마스터는 Status Update Request를 수행해야 한다.

8 전체 기능표 알아두기

이 장에서는 인버터에서 설정할 수 있는 모든 기능을 보여줍니다. 전체 기능표를 참조하여 운전 조건에 맞는 파라미터를 설정하십시오. 허용되지 않는 설정 값을 입력한 경우 키패드에 다음과 같이 표시됩니다. 이런 경우에는 [ENT] 키를 누르더라도 인버터가 동작하지 않습니다.

8.1 드라이브 그룹(DRV)

회색 음영 부분은 관련 코드가 선택되어 있는 경우에만 나타남 *O: 운전 중 쓰기 가능, Δ: 운전 정지 시 쓰기 가능, X: 쓰기 금지

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값		속성*	참조
00	-	점프 코드	Jump Code	1~9	1~99		9		<u>p.65</u>
01	0h1101	목표 주파수	Cmd Frequency	0.00, Low Freq~ High Freq		0.00		0	<u>p.84</u>
		키패드	Karpad	0	Reverse				
02	0h1102	운전 방향 설정	Run Dir	1	Forward	1		0	<u>p.80</u>
						20.0	5.5~ 90kW		
03	0h1103	가속 시간	Acc Time	0.0~	-600.0(sec)	60.0	110~ 250kW	0	<u>p.106</u>
						100.0	315~ 500kW		
04	0h1104	감속 시간	Dec Time	0.0~	-600.0(sec)	30.0	5.5~ 90kW	0	<u>p.106</u>

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값		속성*	참조
						90.0	110~ 250kW		
						150.0	315~ 500kW		
05	0h1105	HAND- OFF- AUTO 키 잠금	KPD H.O.A Lock	0 0 1 2	Locked Locked During Run Unlocked	1:During Run		Δ	=
06	0h1106	운전 지령 방법	Cmd Source	0 1 2 3	Keypad Fx/Rx-1 Fx/Rx-2 Int 485 Field Bus	1: Fx/Rx-1		Δ	<u>p.98</u>
				4 5	Time Event	_			
07	0h1107	주파수 설정 방법	Freq Ref Src	0 1 2 4 5 6 7 9 1 0 13 11	Keypad-1 Keypad-2 V1 V2 I2 Int 485 FieldBus Pulse V3 I3	0: Keyp	ad-1	Δ	<u>p.78</u>
08	0h1108	AUTO 모 드 사용 방법 선택	AUTO Mode Sel	0 1	Enabled Disabled	1: Disat	bled	Δ	<u>p.78</u>
09	0h1109	제어 모드	Control	0	V/F	0. V/F		٨	p.115
00	011103	~~~~	Mode	1	Slip Compen	10: V/F			<u>p.115</u>

Г

¹³ DRV-07의 10~11 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

코드	통신 번지	명칭	LCD 표시	설정	성 범위	초기 값	속성*	참조	
11	0h110B	조그 주파수	Jog Frequency	0.00, Low Freq~ High Freq		10.00	0	-	
12	0h110C	조그 운전 가속 시간	Jog Acc Time	0.0~600.0(sec)		20.0	0	-	
13	0h110D	조그 운전 감속 시간	Jog Dec Time	0.0	~600.0(sec)	30.0	0	-	
				7	3.7 kW (5.0HP)				
				8	4.0 kW (5.5HP)				
				9	5.5 kW (7.5HP)				
				10	10	7.5 kW(10.0HP)			
				11	11.0 kW (15.0HP)				
					12	15.0 kW (20.0HP)			
				13	18.5 kW (25.0HP)	모터 용량에 따라 다르	Δ		
14	0h110E	모터 용량	Motor Capacity	14	22.0 kW (30.0HP)			-	
				15	30.0 kW (40.0HP)				
				16	37.0 kW (50.0HP)				
				17	45.0 kW (60.0HP)				
				18	55.0 kW (75.0HP)				
				19	75.0kW				
			2	20	90.0kW				
					21	110.0kW (150.0HP)			

코드	통신 번지	명칭	LCD 표시	설정	성 범위	초기 값		속성*	참조
				22	132.0kW (220.0HP)				
				23	160.0kW				
				23	(250.0HP)	-			
				24	185.0kW				
					(300.0HP)	-			
				25	220.0kVV				
					(350.0HP)				
				26	250.0KVV (400.0HP)				
					315 0kW	-			
				27	(500.0HP)				
				~~	355.0kW				
				28	(550.0HP)				
				20	400.0kW				
				29	(650.0HP)				
				30	500.0kW				
				50	(800.0HP)				
		토크		0	Manual			Δ	
15	0h110F	부스트	Torque	1	Auto 1	0: Manu	ual		<u>p.118</u>
		방법	DUUSI	2	Auto 2				
		정방향				2.0	5.5~ 90kW		
16 ¹⁴	0h1110	토크	Fwd Boost	0.0	~15.0(%)	1.0	110~	Δ	<u>p.118</u>
		부스트				1.0	500kW		
		역방향				2.0	5.5~ 90kW		
17	0h1111	토크	Rev Boost	0.0	~15.0(%)	1.0	110~	Δ	<u>p.118</u>
		부스트				1.0	500kW		
10	061112	기저	Basa Erag	30.	00~	60.00		_	n 11E
10		주파수	Dase riey		400.00(Hz)	00.00			<u>p.115</u>
19	0h1113	시작 주파수	Start Freq	0.0	1 ~ 10.00(Hz)	0.50		Δ	<u>p.115</u>

Г

¹⁴ DRV-16~DRV-17 코드는 DRV-15 코드가 0(Manual)으로 설정된 경우 나타남

코드	통신 번지	명칭	LCD 표시	설7	성 범위	초기 값	속성*	참조
20	0h1114	최대 주파수	Max Freq	40.00~ 400.00(Hz)		60.00	Δ	<u>p.126</u>
21	0h1115	속도 단위	Hz/Rpm	0	Hz Display	0:Hz Display	0	p.96
	•	선택	Sel	1	Rpm Display		-	<u></u>
24	0h1118	HAND키 사용 여브	Hand Key	0 None		0. None	^	n 78
27	011110	서망 하무	Sel	1	Disabled			<u>p.r.o</u>
25	0h1119	핸드모드 운전 주파수	HAND Cmd Freq	0.00, Low Freq~ High Freq		0.00	0	<u>p.80</u>
26		핸드모드 운전	HAND Ref	0	HAND Parameter		Δ	n 90
20	UNTTA	주파수 설정 방법	Mode	1	Follow AUTO			<u>p.oo</u>
30	0b111E	kW/HP	kW/HP Unit	0	kW	1.HD	0	_
50	OIIIIIE	단위 선택	Sel	1	HP	1.1.11	Ŭ	
				0	None			
91	0h115B	스마트카 피	SmartCopy	1	SmartDownlo ad	0:None	Δ	
				3	SmartUpload			
98	0h1162	I/O S/W Version 표시	I/O S/W Ver	-	-	-	x	-

8.2 기본 기능 그룹(BAS)

٢

회색 음영 부분은 관련 코드가 선택되어 있는 경우에만 나타남

*O: 운전 중 쓰기 가능, Δ: 운전 정지 시 쓰기 가능, X: 쓰기 금지

코드	통신 번지	명칭	LCD 표시	설정 벾	벜위	초기 값	속성 *	참조
00	-	점프 코드	Jump Code	1~99 0 None 1 V1 3 V2 4 I2		20	0	<u>p.65</u>
				0	None			
				1	V1			
			Aux Ref Src	3	V2			<u>p.136</u>
				4	12			
				6	Pulse		Δ	
		보조속		7	Int 485			
01	0h1201	지령 설정		8	FieldBus	0:None		
		방법		10	EPID1 Output			
				11	EPID1 Fdb Val			
				12 ¹⁵	V3			
				13	13			
				0	M+(G*A)			
				1	Mx (G*A)			
		보조속		2	M/(G*A)	0:		
02 ¹⁶	0h1202	지령 동작 / 선택	Aux Calc Type	3	M+[M*(G*A)]	M+(G*A)	Δ	<u>p.136</u>
			-	4	M+G*2(A- 50%)			

¹⁵ BAS-01 의 12~13 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

¹⁶ BAS-02~BAS-03 코드는 BAS-01 코드가 0(None)이 아닌 경우 나타남

코드	통신 번지	명칭	LCD 표시	설정 범	ː위	초기 값	속성 *	참조
				5	M*[G*2(A- 50%)			
				6	M/[G*2(A- 50%)]			
				7	M+M*G*2(A-50%)			
03	0h1203	보조속 지령 게인	Aux Ref Gain	-200.0	~ 200.0(%)	100.0	0	<u>p.136</u>
				0	Keypad			
				1	Fx/Rx-1			
04	061204	제 2 운전	Cmd 2nd Src	2	Fx/Rx-2	1:	Λ	n 130
04 01120	011204	지령 방법		3	Int 485	Fx/Rx-1	Δ	<u></u>
				4	FieldBus			
				5	Tme Event			
				0	Keypad-1			
				1	Keypad-2			
				2	V1			
		제 2		4	V2			
05	061205	세 Z ㅈ피스	Frog 2nd Src	5	12	0: Kovrod	0	n 120
00	011200	ㅜ피ㅜ 서저 바버		6	Int 485	1	0	<u>p.130</u>
		20.01		7	FieldBus			
				9	Pulse			
			10 ¹⁷	V3				
				11	13			
				0	Linear	0		
07 0	0h1207	V/F패턴 V	V/F Pattern 1	1	Square	0: Linear	Δ	<u>p.115</u>
				2	User V/F			

¹⁷ BAS-05 의 10~11 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

402 SELECTRIC

코드	통신 번지	명칭	LCD 표시	설정 범	위	초기 값	속성 *	참조
				3	Square 2			
		가/감속		0	Max Freq	0.		
08	0h1208	기준 주파수	Ramp T Mode	1	Delta Freq	Max Freq	Δ	<u>p.106</u>
				0	0.01 sec			
09	0h1209	시신 인기 서저	Time Scale	1	0.1 sec	1:0.1 sec	Δ	<u>p.106</u>
		20		2	1 sec			
40	01.400.4	입력 전원		0	60Hz	0.0011		
10	0n120A	주파수	60/50 HZ Sel	1	50Hz	0:60HZ	Δ	<u>p.241</u>
11	0h120B	모터 극수	Pole Number	2~48			Δ	<u>p.150</u>
12	0h120C	정격 슬립 속도	Rated Slip	0 ~ 3000(rpm)			Δ	<u>p.150</u>
13	0h120D	모터 정격 전류	Rated Curr	1.0 ~ 1	000.0(A)	모더에 따라 다름	Δ	<u>p.150</u>
14	0h120E	모터 무부하 전류	Noload Curr	0.0 ~ 1	000.0(A)		Δ	<u>p.150</u>
15	0h120F	모터 정격 전압	Rated Volt	0, 170	~ 480(V)	0	Δ	<u>p.120</u>
16	0h1210	모터 효율	Efficiency	70 ~ 100(%)		모터에 따라 다름	Δ	<u>p.205</u>
18	0h1212	파워 표시 조정	Trim Power %	70 ~ 13	30(%)	100	0	-
19	0h1213	입력 전원 전압	AC Input Volt	170~ 264V 320~	0.75~ 18.5kW 0.75~	220V	0	<u>p.241</u>

Г

코드	통신 번지	명칭	LCD 표시	설정 범위			초기 값	속성 *	참조
				528V		90kW			
				320	~	110~	380V		
				550	V	500kW			
				0	None	9			
			_	1	All(호	[전형)			
20	-	자동 튜닝	Auto Tuning	2	ALL(정지형)	0:None	Δ	<u>p.205</u>
				3	Rs+l (회전	_sigma 1형)			
21	-	고정자 저항	Rs	0.000 ~ 9.999(Ω)		.999(Ω)	모터에	Δ	<u>p.205</u>
22	-	누설 인덕턴스	Lsigma	0.00 ~99.99(mH)		.99(mH)	다름	Δ	<u>p.205</u>
41 ¹⁸	0h1229	사용자 주파수 1	User Freq 1	0.00 최디)~ ዘ 주피	다수(Hz)	15.00	Δ	<u>p.117</u>
42	0h122A	사용자 전압 1	User Volt 1	0~	100(%	%)	25	Δ	<u>p.117</u>
43	0h122B	사용자 주파수 2	User Freq 2	0.00 최디)~ ዘ주피	다수(Hz)	30.00	Δ	<u>p.117</u>
44	0h122C	사용자 전압 2	User Volt 2	0~	100(%	%)	50	Δ	<u>p.117</u>
45	0h122D	사용자 주파수 3	User Freq 3	0.00 최디)~ ዘ주피	다수(Hz)	45.00	Δ	<u>p.117</u>

¹⁸ BAS-41~BAS48 코드는 BAS-07 또는 M2-25 코드 중 하나라도 2(User V/F)로 설정된 경우 나타남

404 | LSELECTRIC

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성 *	참조
46	0h122E	사용자 전압 3	User Volt 3	0 ~ 100(%)	75	Δ	<u>p.117</u>
47	0h122F	사용자 주파수 4	User Freq 4	0.00 ~ 최대 주파수(Hz)	60.00	Δ	<u>p.117</u>
48	0h1230	사용자 전압 4	User Volt 4	0 ~ 100(%)	100	Δ	<u>p.117</u>
50 ¹⁹	0h1232	다단속 주파수 1	Step Freq-1	0.00, Low Freq~ High Freq	10.00	0	<u>p.96</u>
51	0h1233	다단속 주파수 2	Step Freq-2	0.00, Low Freq~ High Freq	20.00	0	<u>p.96</u>
52	0h1234	다단속 주파수 3	Step Freq-3	0.00, Low Freq~ High Freq	30.00	0	<u>p.96</u>
53	0h1235	다단속 주파수 4	Step Freq-4	0.00, Low Freq~ High Freq	40.00	0	<u>p.96</u>
54	0h1236	다단속 주파수 5	Step Freq-5	0.00, Low Freq~ High Freq	50.00	0	<u>p.96</u>
55	0h1237	다단속 주파수 6	Step Freq-6	0.00, Low Freq~ High Freq	60.00	0	<u>p.96</u>
56	0h1238	다단속 주파수 7	Step Freq-7	0.00, Low Freq~ High Freq	60.00	0	<u>p.96</u>
70	0h1246	다단 가속 시간 1	Acc Time-1	0.0 ~ 600.0(sec)	20.0	0	<u>p.109</u>

Г

¹⁹ BAS-50~BAS-56 코드는 IN-65~71 코드 중 하나라도 Speed-L/M/H 로 설정된 경우 나타남

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성 *	참조
71	0h1247	다단 감속 시간 1	Dec Time-1	0.0 ~ 600.0(sec)	20.0	0	<u>p.109</u>
72 ²⁰	0h1248	다단 가속 시간 2	Acc Time-2	0.0 ~ 600.0(sec)	30.0	0	<u>p.109</u>
73	0h1249	다단 감속 시간 2	Dec Time-2	0.0 ~ 600.0(sec)	30.0	0	<u>p.109</u>
74	0h124A	다단 가속 시간 3	Acc Time-3	0.0 ~ 600.0(sec)	40.0	0	<u>p.109</u>
75	0h124B	다단 감속 시간 3	Dec Time-3	0.0 ~ 600.0(sec)	40.0	0	<u>p.109</u>
76	0h124C	다단 가속 시간 4	Acc Time-4	0.0 ~ 600.0(sec)	50.0	0	<u>p.109</u>
77	0h124D	다단 감속 시간 4	Dec Time-4	0.0 ~ 600.0(sec)	50.0	0	<u>p.109</u>
78	0h124E	다단 가속 시간 5	Acc Time-5	0.0 ~ 600.0(sec)	40.0	0	<u>p.109</u>
79	0h124F	다단 감속 시간 5	Dec Time-5	0.0 ~ 600.0(sec)	40.0	0	<u>p.109</u>
80	0h1250	다단 가속 시간 6	Acc Time-6	0.0 ~ 600.0(sec)	30.0	0	<u>p.109</u>
81	0h1251	다단 감속 시간 6	Dec Time-6	0.0 ~ 600.0(sec)	30.0	0	<u>p.109</u>

²⁰ BAS-72~BAS-83 코드는 IN-65~71 코드 중 하나라도 Xcel-L/M/H 로 설정된 경우 나타남

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성 *	참조
82	0h1252	다단 가속 시간 7	Acc Time-7	0.0 ~ 600.0(sec)	20.0	0	<u>p.109</u>
83	0h1253	다단 감속 시간 7	Dec Time-7	0.0 ~ 600.0(sec)	20.0	0	<u>p.109</u>

8.3 확장 기능 그룹(ADV)

Г

회색 음영 부분은 관련 코드가 선택되어 있는 경우에만 나타남 *O: 운전 중 쓰기 가능, Δ: 운전 정지 시 쓰기 가능, X: 쓰기 금지

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
00	-	점프 코드	Jump Code	1~99	1	24	0	<u>p.65</u>
01	0h1301	가속 패턴	Acc Pattern	0 1	Linear S-curve	0: Linear	Δ	<u>p.112</u>
02	0h1302	감속 패턴	Dec Pattern	0 1	Linear S-curve	0: Linear	Δ	<u>p.112</u>
03 ²¹	0h1303	S 자 가속 시점 기울기	Acc S Start	1 ~ 100(%)		40	Δ	<u>p.112</u>
04	0h1304	S 자 가속 종점 기울기	Acc S End	1 ~ 100(%)		40	Δ	<u>p.112</u>
05 ²²	0h1305	S 자 감속 시점 기울기	Dec S Start	1 ~ 100(%)		40	Δ	<u>p.112</u>
06	0h1306	S 자 감속 종점 기울기	Dec S End	1 ~ 100(%)		40	Δ	<u>p.112</u>
07	0h1307		Start Mode	0	Acc	0:Acc	Δ	p.121

²¹ ADV-03~ADV-04 코드는 ADV-01 코드가 1(S-curve)로 설정된 경우 나타남

²² ADV-05~ADV-06 코드는 ADV-02 코드가 1(S-curve)로 설정된 경우 나타남

코드	통신 번지	명칭		LCD 표시	설정	범위	초기 값		속성*	참조
		기동	방법		1	DC-Start				
					0	Dec				
					1	DC-Brake				
08	0h1308	정지	방법	Stop Mode	2	Free-Run	0:Dec		Δ	<u>p.122</u>
				4	Power Braking					
					0	None				
09 0	0h1309	회전 금지 방향	Run Prevent	1	Forward Prev	0: Nor	e	Δ	<u>p.101</u>	
		선택		2	Reverse Prev					
		전원	투입 시		0	No				
10	0h130A	기동	기동 Power-on Run 1 Yes		Yes	0:No		0	<u>p.102</u>	
11 ²³	0h130B	전원 기동	투입 시 지역시간	Power-On Delay	0.0 ~ 6000.0(sec)		0.0		0	<u>p.102</u>
		- 10		73						
12 ²⁴	0h130C	기동 제동	시 식류 시간	DC-Start Time	0.00 60.0	~ 0(sec)	0.00		Δ	<u>p.121</u>
13	0h130D	직류	인가량	DC- Inj Level	0~2	200(%)	50		Δ	<u>p.121</u>
4 425	061205	직류	제동 전	DC-Block	0.00	~	0.00	5.5~ 90kW	^	n 122
1423	UNISUE	출력	차단 시간	Time	60.00(sec)		2.00	110~ 500kW		<u>p.122</u>
15	0h130F	직류 시간	제동	DC-Brake Time	0.00 ~ 60.00(sec)		1.00		Δ	<u>p.122</u>
16	0h1310	직류	제동량	DC-Brake Level	0 ~ 200(%)		50		Δ	<u>p.122</u>
17	0h1311	직류 주파	제동 수	DC-Brake Freq	시작 60.0	주파수 ~ 0(Hz)	주파수 ~ 5.00 [Hz]		Δ	<u>p.122</u>
18	0h1312				0	No	0: No		0	<u>p.78</u>

²³ ADV-11 코드는 ADV-10 코드가 1(YES)로 설정된 경우 나타남

²⁴ ADV-12 코드는 ADV-07 코드가 1(Dc-Start)로 설정된 경우 나타남

²⁵ ADV-14 코드는 ADV-08 코드가 1(DC-Brake)로 설정된 경우 나타남

٦

코드	통신 번지	명칭	LCD 표시	설정	설정 범위		초기 값	속성*	참조
		키패드 운전 Power On Run 기능 선택	KPD Pwr-on Run	1	Ye	S			
19	0h1313	키패드 운전 Power On Run 지연 시간	KPD Pwr-on Dly	0.0~	0.0~600.0(sec)		0.0	0	<u>p.102</u>
20	0h1314	가속 시 드웰 주파수	Acc Dwell Freq	시작 주파수~ 최대 주파수(Hz)		^든 파수~ (Hz)	5.00	Δ	-
21	0h1315	가속 시 드웰 운전시간	Acc Dwell Time	0.0 ~ 60.0(sec)		0.0(sec)	0.0	Δ	-
22	0h1316	감속 시 드웰 주파수	Dec Dwell Freq	시작 주파수~ 최대 주파수(Hz)			5.00	Δ	-
23	0h1317	감속 시 드웰 운전 시간	Dec Dwell Time	0.0 ~ 60.0(sec)		0.0(sec)	0.0	Δ	-
24	0h1318	주파수 제한	Freq Limit	0 1	1	No Yes	0:No	Δ	<u>p.127</u>
25	0h1319	주파수 하한 값	Freq Limit Lo	0.00 주파	~ 수	상한 (Hz)	0.50	Δ	<u>p.127</u>
26	0h131A	주파수 상한 값	Freq Limit Hi	하한 주파수 ~ 최대 주파수(Hz)		^드 파수 ~ (Hz)	최대 주파수	Δ	<u>p.127</u>
27	0h131B	주파수 점프	Jump Freq	0 No 1 Yes		No Yes	0:No	Δ	<u>p.128</u>
28 ²⁶	0h131C	점프 주파수 하한 1	Jump Lo 1	· 0.00~점프 주파수 상한 1(Hz)		<u></u>]프 Hz)	10.00	0	<u>p.128</u>

Г

²⁶ ADV-28~ADV-33 코드는 ADV-27 코드가 1(Yes)로 설정된 경우 나타남

전체 기능표 알아두기

코드	통신 번지	명칭	LCD 표시	설정 벋	위	초기 값	속성*	참조
29	0h131D	점프 주파수 상한 1	Jump Hi 1	점프 주파수 하한 1~최대 주파수(Hz)		15.00	0	<u>p.128</u>
30	0h131E	점프 주파수 하한 2	Jump Lo 2	0.00~점프 주파수 상한 2(Hz)		20.00	0	<u>p.128</u>
31	0h131F	점프 주파수 상한 2	Jump Hi 2	점프 주파수 하한 2~최대 주파수(Hz)		25.00	0	<u>p.128</u>
32	0h1320	점프 주파수 하한 3	Jump Lo 3	0.00~점프 주파수 상한 3(Hz)		30.00	0	<u>p.128</u>
33	0h1321	점프 주파수 상한 3	Jump Hi 3	점프 주파수 하한 3~최대 주파수(Hz)		35.00	0	<u>p.128</u>
50	0h1332	에너지 절약 운전	E-Save Mode	0 1 2	None Manual Auto	0:None	Δ	-
51 ²⁷	0h1333	에너지 절약 크기	Energy Save	0 ~ 30((%)	0	0	-
52	0h1334	에너지 절약점 써치 시간	E-Save Det T	0.0 ~ 100.0(sec)		20.0	Δ	-
60	0h133C	가/감속 시간 전환 주파수	Xcel Change Fr	0.00 ~ 최대 주파수(Hz)		0.00	Δ	<u>p.110</u>
64	0h1340	냉각 팬 제어	Fan Control	0 During Run 1 Always ON		0:During Run	0	-

٦

²⁷ ADV-51 코드는 ADV-50 코드가 1(Manual)일 경우에만 나타남.

ADV-52 코드는 ADV-50 코드가 2(Auto)일 경우에만 나타남.

코드	통신 번지	명칭	LCD 표시	설정 벋	녉위	초기 값	속성*	참조
				2	Temp Control			
		업/다운 운전	U/D Save	0	No			
65	0h1341	주파수 저장	Mode	1	Yes	0:No	0	-
				0	None			
				1	V1			
	0h1342	출력 접점 온오프 제어 방법	On/Off Ctrl Src	3	V2		0	
66				4	12	0:None		-
				6	Pulse			
				7 ²⁸	V3			
				8	13			
	0h1343	출력 접점 온		출력 7	접점 오프			
67			On-Ctrl Level	레벨~		90.00	Δ	-
		레멜		100.00)(%)			
	0h1344	출력 접점 오프 레벨	Off-Ctrl Level	-100.00 ~ 출력				
68				접점 온		10.00	Δ	-
				 레벨(%)				
		안전 운전 선택		0	Always			
		여부			Enable			
70	0h1346		Run En Mode		וח	0:Always	Λ	-
				1	Depend	Enable	_	
					ent			
				0	Free-			
		안전 운전 정지		0	Run			
71 ²⁹	0h1347	·	Run Dis Stop	1	Q-Stop	0:Free-Run	Δ	-
		망입		2	Q-Stop Resume			
70	01-40-40	안전 운전 감속		0.0	~ 600.0	F 0	0	
72	0h1348	시간	Q-Stop Time	(sec)		5.0		-

Г

²⁸ ADV-66 의 7~8 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

²⁹ ADV-71~ADV-72 코드는 ADV-70 코드가 1(DI Dependent)로 설정된 경우 나타남

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
74	061340	회생 회피 기능		0	No	0:No	^	_
		선택	NegenAvu Sei	1	Yes	0.110	Δ	
75 0h134	06134B	회생 회피 동작	RegenAvd	200V : 300~400V		350	^	
	onio-D	전압 레벨	Level	400∨ : 600~800∨		700	Δ	-
76 ³⁰	0h134C	회생 회피 보상	CompFreq	0.00 ~ 10.00Hz		1.00	Δ	-
-		주파수 제한	Limit					
77	0h134D	회생 회피 P 게인	RegenAvd Pgain	0.0 ~ 100.0%		50.0	0	-
78	0h134E	회생 회피 I 게인	RegenAvd Igain	20 ~ 30000(msec)		500	0	-
87	0h1357	과변조 모드	OVM Mode	0	No		Δ	p.133
		1357 설정 S	Sel	1	Yes	1.165		

8.4 제어 기능 그룹(CON)

회색 음영 부분은 관련 코드가 선택되어 있는 경우에만 나타남 *O: 운전 중 쓰기 가능, Δ: 운전 정지 시 쓰기 가능, X: 쓰기 금지

코드	통신 번지	명칭	LCD 표시	설정 범위 초기 깂		초기 값		참조
00	-	점프 코드	Jump Code	1 ~ 99	4		0	<u>p.65</u>
	0h1404	캐리어 주파수	Carrier Freq	1.0~15.0 kHz	0.75~30 kW		0	-
04				1.0~10.0 kHz	37~55 kW	3.0		
				1.0~7.0 kHz	75/90kW			
				1.0~5.0kHz	110~355 kW	2.0		

³⁰ ADV-76~ADV-78 코드는 ADV-74 코드가 1(Yes)로 설정된 경우 나타남

				1.0~4	4.0kHz	400~500 kW	1.5		
	01.4.405			0	Normal PWM				
05	Un1405	스위싱 모드	PVVM Mode	1	Lowleaka ge PWM	0: Norma	IPVVM	Δ	-
40		헌팅방지 기능		0	No	1: Yes			
13	0n140D	사용 유무	AHR Sei	1	Yes			Δ	-
	0h140E	헌팅방지 P	AHR P-Gain	0~3	2767	1000		0	
14		게인							-
15	0h140F	헌팅방지 시작	AHR Low Freq	0.00 High	~ AHR Freq	0.50		0	-
		주파수		riigii rieq					
16	0h1410	헌팅방지 종료	AHR High Freq	AHR Low Freq~400.00		400.00		0	_
10		주파수							
	0h1411	헌팅방지 보상	AHR limit	0~2	0	2		0	
17		전압 제한율							-
	0h1415	자동 토크	ATB Filt Gain	1 ~ 9999(msec)		10		0	
21 ³¹		부스트 필터							<u>p.119</u>
	게인								
	0h1416	자동 토크	ATB Volt Gain	0.0 ~	300.0%	100.0		0	
22		부스트 전압							<u>p.119</u>
		게인							
		속도 써치 모드		0	Flying Start-1	0:			
70	0h1446	선택	SS Mode	1	Flying Start-2	Flying Sta	art-1	Δ	-
				Bit	0000~ 1111				
		n1447 속도 써치 운전 선택	Speed Search		가속				
71	0h1447			Bit 0	시속도	0000	Δ	-	
					써치				
					선택				

³¹ CON-21~CON-22 코드는 DRV-15 를 Auto 2 로 설정해야 보임

Г
- ³² CON-72 코드는 Flying Start-1 이 설정되고 CON-71 코드의 비트가 하나라도 1 로 설정된
- 경우 나타남

³³ CON-73~CON-75 코드는 CON-71 코드의 비트가 하나라도 1 로 설정된 경우 나타남

					LV rip 제외한 트립				
				Bit 1	발생 후				
					Reset 기				
					동하는				
					경우				
					순시				
				Bit 2	정전 후				
					재기동하				
					는경우				
					전원				
					투입과				
				Bit 3	동시에				
					기동하는				
					경우				
72 ³²	0b1448	속도 써치 기준	SS Sup-Current	50~	120(%)	90	5.5~ 250kW	0	_
12	0111410	전류		00	120(70)	80	315~ 500kW	Ŭ	
						Flyin : 100	g Start-1		
73 ³³	0h1449	속도 써치 비례 게인	SS P-Gain	0~9	999	Flyin	g Start-2 ମା	0	-
		"				.포너 따라	에 다름		
						Flyin	g Start-1		
74	0h144A	44A 속도 써치 적분 SS	SS I-Gain (0 ~ 9999		Flyin	g Start-2	0	-
	7					:모터	에		
						따라	다름		

75	0h144B	속도 검색 전 출력 차단 시간	SS Block Time	0.0 ~ 60.0(sec)		1.0		Δ	-
		에너지 버퍼링		0 No 1 Yes		0:No		_	
77	0h144D	선택	KEB Select					Δ	-
78 34	0b144E	에너지 버퍼링	KEB Start Lev	110.0 ~ 140.0(%)		125.0	5.5~ 90kW	Λ	_
70	011144E	시작량				115.0	110~ 500kW	Δ	
70		에너지 버퍼링	KER Stop Lov	KEB Start Lev * 125.0 ~ 145.0(%)		130.0	5.5~ 90kW	٨	
19	0111446	정지량	NEB Stop Lev			125.0	110~ 500kW	Δ	
80	0h1450	에너지 버퍼링 슬립 게인	KEB Slip Gain	1~2	20000	300		0	-
81	0h1451	에너지 버퍼링 P 게인	KEB P Gain	1~2	20000	1000		0	-
82	0h1452	에너지 버퍼링 I 게인	KEB I Gain	1 ~ 20000		500		0	-
83	061452	에너지 버퍼링		0.0	000.0	10.0	5.5~ 90kW		
	0h1453	가속시간	KED ACC HINE	0.0 ~ 600.0		30.0	110~ 500kW	0	-

8.5 입력 단자대 기능 그룹(IN)

٢

회색 음영 부분은 관련 코드가 선택되어 있는 경우에만 나타남 *O: 운전 중 쓰기 가능, Δ: 운전 정지 시 쓰기 가능, X: 쓰기 금지

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
00	-	점프 코드	Jump Code	1~99	65	0	<u>p.65</u>

³⁴ CON-78~CON-83 코드는 CON-77 코드가 1(Yes)로 설정된 경우 나타남

코드	통신 번지	명칭	LCD 표시	설정	범위	초기 값	속성*	참조
01	0h1501	아날로그 최대 입력 시 주파수	Freq at 100%	시작 최대	[·] 주파수~ 주파수(Hz)	최대 주파수	0	<u>p.85</u>
05 ³⁵	0h1505	V1 입력량 표시	V1 Monitor(V)	0~ 1 -12.(2.00(V) or 00 ~ 12.00(V)	0.00	х	<u>p.85</u>
06	0h1506	V1 입력 극성 선택	V1 Polarity	0 1	Unipolar Bipolar	0: Unipolar	Δ	<u>p.85</u>
07	0h1507	V1 입력 필터 시정 수	V1 Filter	0~1	10000(ms)	10	0	<u>p.85</u>
08	0h1508	V1 입력 최소 전압	V1 Volt x1	0.00	~ 10.00(V)	0.00	0	<u>p.85</u>
09	0h1509	V1 최소 전압 시 출력%	V1 Perc y1	0.00	~ 100.00(%)	0.00	0	<u>p.85</u>
10	0h150A	V1 입력 최대 전압	V1 Volt x2	0.00	~ 12.00(V)	10.00	0	<u>p.85</u>
11	0h150B	V1 최대 전압 시 출력%	V1 Perc y2	0.00	~ 100.00(%)	100.00	0	<u>p.85</u>
12 ³⁶	0h150C	-V1 입력 최소 전압	V1 –Volt x1'	-10.0	00 ~ 0.00(V)	0.00	0	<u>p.88</u>
13	0h150D	V1 최소 전압 시 출력%	V1 –Perc y1′	-100.00 ~ 0.00(%)		0.00	0	<u>p.88</u>
14	0h150E	V1 입력 최대 전압	V1 –Volt x2'	-12.00 ~ 0.00(V)		-10.00	0	<u>p.88</u>
15	0h150F	 V1 최대 전압 시 출력 %	V1 –Perc y2'	-100.00 ~ 0.00(%)		-100.00	0	<u>p.88</u>
16	0h1510	V1 회전 방향 변경	V1 Inverting	0 1	No Yes	0: No	0	<u>p.85</u>

³⁵ IN-06 코드설정에 따라 설정 범위가 변화됨

³⁶ IN-12~IN-17 코드는 IN-06 코드가 1(Bipolar)로 설정된 경우 나타남

416 SELECTRIC

코드	통신 번지	명칭	LCD 표시	설정	범위	초기 값	속성*	참조
17	0h1511	V1 양자화 레벨	V1 Quantizing	0.00 0.04) ³⁷ , I~10.00(%)	0.04	0	<u>p.85</u>
20 ³⁸	0h1514	온도 표시	T1 Monitor	0.00 ~ 100.00(%)		-	Х	-
35 ³⁹	0h1523	V2 입력량 표시	V2 Monitor(V)	0.00)~12.00(V)	0.00	0	<u>p.92</u>
37	0h1525	V2 입력 필터 시정 수	V2 Filter	0~10000(msec)		10	0	<u>p.92</u>
38	0h1526	V2 입력 최소 전압	V2 Volt x1	0.00~10.00(V)		0.00	0	<u>p.92</u>
39	0h1527	V2 최소 전압 시 출력%	V2 Perc y1	0.00~100.00(%)		0.00	0	<u>p.92</u>
40	0h1528	V2 입력 최대 전압	V2 Volt x2	0.00	0~10.00(V)	10.00	0	<u>p.92</u>
41	0h1529	V2 최대 전압 시 출력 %	V2 Perc y2	0.00)~100.00(%)	100.00	0	<u>p.92</u>
46	0h152E	V2 회전 방향 변경	V2 Inverting	0 1	No Yes	0:No	0	<u>p.92</u>
47	0h152F	V2 양자화 레벨	V2 Quantizing	0.00 0.04	I) ⁴⁰ , I~ 10.00(%)	0.04	0	<u>p.92</u>
50 ⁴¹	0h1532	l2 입력량 표시	I2 Monitor (mA)	0~2	24(mA)	0	0	<u>p.91</u>
52	0h1534	I2 입력필터 시정 수	I2 Filter	0~	10000(msec)	10	0	<u>p.91</u>

³⁷ 0으로 설정하면 양자화(Quantizing) 사용하지 않음

Г

- ³⁸ IN-20 코드는 아날로그 전압/전류 입력 단자 설정 스위치(SW3)가 T1 으로 선택된 경우 나타남
- ³⁹ IN-35~IN-47 코드는 아날로그 전압/전류 입력 단자 설정 스위치(SW4)가 V2 로 선택된 경우 나타남
- ⁴⁰ 0 으로 설정하면 양자화(Quantizing) 사용하지 않음
- ⁴¹ IN-50~IN-62 코드는 아날로그 전압/전류 입력 단자 설정 스위치(SW5)가 I2 로 선택된 경우 나타남

코드	통신 번지	명칭	LCD 표시	설정	범위	초기 값	속성*	참조
53	0h1535	l2 입력 최소 전류	l2 Curr x1	0.00 -	~ 20.00(mA)	4.00	0	<u>p.91</u>
54	0h1536	l2 최소 전류 시 출력 %	l2 Perc y1	0.00 /	~ 100.00(%)	0.00	0	<u>p.91</u>
55	0h1537	l2 입력 최대 전류	l2 Curr x2	l2 Cu 24.00	rr X1 ~)(mA)	20.00	0	<u>p.91</u>
56	0h1538	l2 최대 전류 시 출력%	I2 Perc y2	0.00 ~ 100.00(%)		100.00	0	<u>p.91</u>
61	0h153D	l2 회전 방향 변경	I2 Inverting	0 I 1 `	No Yes	0:No	0	<u>p.91</u>
62	0h153E	I2 양자화 레벨	I2 Quantizing	0.00 ⁴ 0.04~	2 <u>1</u> 10.00(%)	0.04	0	<u>p.91</u>
65	0h1541	P1 단자 기능 설정	P1 Define	0 1	None Fx	1:Fx	Δ	<u>p.98</u>
66	0h1542	P2 단자 기능 설정	P2 Define	2	Rx	2:Rx	Δ	<u>p.98</u>
67	0h1543	P3 단자 기능 설정	P3 Define	3	RST	5:BX	Δ	-
68	0h1544	P4 단자 기능 설정	P4 Define	4	External Trip	3:RST	Δ	-
69	0h1545	P5 단자 기능 설정	P5 Define	5	вх	7:Sp-L	Δ	-
70	0h1546	P6 단자 기능 설정	P6 Define	6	JOG	8:Sp-M	Δ	-
71	0h1547	P7 단자 기능 설정	P7 Define	7	Speed-L	9:Sp-H	Δ	<u>p.96</u>
				8	Speed-M			p.96
				9	Speed-H			p.96

⁴² 0 으로 설정하면 양자화(Quantizing) 사용하지 않음

코드	통신 번지	명칭	LCD 표시	설정	범위	초기 값	속성*	참조
				11	XCEL-L			p.109
				12	XCEL-M			p.109
				13	XCEL-H			p.109
				14	XCEL Stop			p.114
				15	RUN Enable			-
				16	3-Wire			-
				17	2nd Source			<u>p.130</u>
				18	Exchange			-
				19	Up			-
				20	Down			-
				22	U/D Clear			-
				23	Analog Hold			<u>p.95</u>
				24	I-Term Clear			-
				25	PID			-
				20	Openloop			
				26	PID Gain2			
				27	PID Ref Change			<u>p.114</u>
				28	2nd Motor			-
				29	Interlock 1			-
				30	Interlock 2			-
				31	Interlock 3			-
				32	Interlock 4			-
				33	Interlock 5			-
				34	Pre Excite			-
				35	Timer In			-
				37	dis Aux Ref			-
				38	FWD JOG			-
				39	REV JOG			-
				40	Fire Mode			-
				41	EPID1 Run			-
				42	EPID1 ItermClr			-
				43	Time Event En			-
				44	Pre Heat			-
				45	Damper Open			-
				46	PumpClean			-

Γ

코드	통신 번지	명칭	LCD 표시	설정	범위	초기 값	속성*	참조
				47	EPID2 Run			-
				48	EPID2 ItermClr			-
				49	Sleep Wake Chg			-
				50	PID Step Ref L			-
				51	PID Step Ref M			-
				52	PID Step Ref H			
				53 ⁴³	Interlock6			-
				54	Interlock7			
				55	Interlock8			
				56	HAND State			-
83	0h1553	DI On Delay 적용 선택	DI On DelayEn	000 111	0000 ~ 1111	111 1111	Δ	
84	0h1554	DI Off Delay 적용 선택	DI Off DelayEn	0000 111 ⁻	0 000 ~ 1 111	111 1111	Δ	
85	0h1555	다기능 입력 단자 온 필터	DI On Delay	0~1	10000(msec)	10	0	<u>p.131</u>
86	0h1556	다기능 입력 단자 오프 필터	DI Off Delay	0~1	10000(msec)	3	0	<u>p.131</u>
		다기느 인려		000 111 ⁻	0000 – 1111			
87	0h1557	기가 이 입기 전전 서태	DI NC/NO Sel	0 A 접점(NO)		000 0000	Δ	<u>p.131</u>
				1	B 접점(NC)			
89	0h1559	다단 지령 지연 시간	InCheck Time	1~5	5000(msec)	1	Δ	<u>p.96</u>
90	0h155A		DI Status	000 111 ⁻	0000 — 1111	000 0000	0	<u>p.131</u>

⁴³ IN-65~71 의 53~55 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

420 SELECTRIC

코드	통신 번지	명칭	LCD 표시	설정	범위	초기 값	속성*	참조
		다기능 입력		0	개방(Off)			
		단자 상태		1	접속(On)			
91	0h155B	펄스 입력량 표시	TI Monitor	0.00) ~ 50.00(kHz)	0.00	х	<u>p.93</u>
92	0h155C	TI 입력 필터 시정 수	TI Filter	0~9	9999(msec)	10	0	<u>p.93</u>
93	0h155D	TI 입력 최소 펄스	TI Pls x1	0~T	l pls x2	0.00	0	<u>p.93</u>
94	0h153E	TI 최소 펄스 시 출력 %	TI Perc y1	0.00) ~ 100.00(%)	0.00	0	<u>p.93</u>
95	0h155F	TI 입력 최대 펄스	TI Pls x2	TI pl	ls x1~32.00	32.00	0	<u>p.93</u>
96	0h1560	TI 최대 펄스 시 출력 %	TI Perc y2	0.00	0 ~ 100.00(%)	100.00	0	<u>p.93</u>
97	0h1561	TI 회전 방향 변경	TI Inverting	0 1	No Yes	0:No	0	<u>p.93</u>
98	0h1562	TI 양자화 레벨	TI Quantizing	0.00 0.04	⁴⁴ , - ~ 10.00(%)	0.04	0	<u>p.93</u>

8.6 출력 단자대 기능 그룹(OUT)

٢

회색 음영 부분은 관련 코드가 선택되어 있는 경우에만 나타남 *O: 운전 중 쓰기 가능, Δ: 운전 정지 시 쓰기 가능, X: 쓰기 금지

⁴⁴ 0 으로 설정하면 양자화(Quantizing)를 사용하지 않습니다.

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
00	-	점프 코드	JumpCode	1 ~ 99	30	0	<u>p.65</u>
01	0h1601	아날로그 출력 1 항목	AO1 Mode	 0 Frequency 1 Output Current 2 Output Voltage 3 DCLink Voltage 4 Output Power 7 Target Freq 8 Ramp Freq 9 PID Ref Value 10 PID Fdb Value 11 PID Output 12 Constant 13 EPID1 Output 14 EPID1 RefVal 15 EPID1 FdbVal 16 EPID2 Output 17 EPID2 RefVal 18 EPID2 FdbVal 	0:Frequen cy	Ο	-
02	0h1602	아날로그 출력 1 게인	AO1 Gain	-1000.0~ 1000.0(%)	100.0	0	-
03	0h1603	아날로그 출력 1 바이어스	AO1 Bias	-100.0~100.0(%)	0.0	0	-
04	0h1604	아날로그 출력 1 필터	AO1 Filter	0 ~ 10000(msec)	5	0	-
05	0h1605	아날로그 상수 출력 1	AO1 Const %	0.0 ~ 100.0(%)	0.0	0	-
06	0h1606	아날로그 출력 1 모니터	AO1 Monitor	0.0 ~ 1000.0(%)	0.0	х	-
07	0h1607	아날로그 출력 2 항목	AO2 Mode	OUT-02 AO1 Mode 선택 범위와 동일	0:Frequen cy	0	-
08	0h1608	아날로그 출력 2 게인	AO2 Gain	-1000.0~ 1000.0(%)	100.0	0	-

코드	통신 번지	명칭	LCD 표시		설정 범위	초기 값	속성*	참조
09	0h1609	아날로그 출력 2 바이어스	AO2 Bias	-100	0.0 ~ 100.0(%)	0.0	0	-
10	0h160A	아날로그 출력 2 필터	AO2 Filter	0~	10000(msec)	5	0	-
11	0h160B	아날로그 상수 출력 2	AO2 Const %	0.0 <i>·</i>	~ 100.0(%)	0.0	0	-
12	0h160C	아날로그 출력 2 모니터	AO2 Monitor	0.0 ·	~ 1000.0(%)	0.0	x	-
				bit	000~111	-		
				Bit 0	저전압 트립 발생			
30	0h161E	트립 출력 항목	Trip Out Mode	Bit	저전압 트립	010	0	-
			•	1	이외의 트립			
				Bit	자동 재기동			
				2	최종 실패			
				0	None			
				1	FDT-1			
				2	FDT-2			
				3	FDT-3	-		
				4	FDT-4			
				5	Over Load	-		
				6	IOL	-		
				7	Under Load	-		
24		다기능 릴레이 1	Delay 1	8	Fan Warning	00.Trin	0	
31	UNIOIF	항목	Relay I	9	Stall	23. mp	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	-
				10	Over Voltage	-		
				11	Low voilage	-	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	
				12	Lost	-		
				13	Command		0 - 0 - X - 0 - X - 0 - 0 -	
				14	Run	1		
				15	Stop]	0 -	
				16	Steady			
_				17	Inverter Line			

코드	통신 번지	명칭	LCD 표시		설정 범위	초기 값	속성*	참조
				18	Comm Line			
				19	Speed Search			
				20	Ready			
				21	MMC			
				22	Timer Out			
				23	Trip			
				24	Lost keypad			
				25	DB Warn%ED			
				26	On/Off Control			
				27	Fire Mode			
				28	Pipe Broken			
				29	Damper Err			
				30	Lubrication			
				31	Pump Clean			
				32	Level Detect			
				33	Damper Control			
				34	CAP.Warning			
				35	Fan Exchange			
32	0h1620	다기능 릴레이 2 항목	Relay 2	36	AUTO State	14:RUN	0	-
33	0h1621	다기능 릴레이 3 항목	Relay 3	37	Hand State	0:None	0	-
34	0h1622	다기능 릴레이 4 항목	Relay 4	38	то	0:None	0	-
35	0h1623	다기능 릴레이 5 항목	Relay 5	39	Except Date	0:None	0	-
				40	KEB Operating			
36	0h1624	다기능 출력 1 항목	Q1 Define	41	BrokenBelt	0:None	0	-
				42	Sleep			
41	0h1629	다기능 출력 모니터	DO Status	DO (00	Status 0000-11 1111)	00 0000	х	-

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
50	0h1632	다기능 출력 온 딜레이	DO On Delay	0.00	~ 100.00(sec)	0.00	0	-
51	0h1633	다기능 출력 오프 딜레이	DO Off Delay	0.00	~ 100.00(sec)	0.00	0	-
52	0h1634	다기능 출력, 릴레이 접점 선택	DO NC/NO Sel	Q1,F Rela (00 (0	Relay5 ~ ay1 0000-11 1111) A 접점 (NO) B 접점 (NC)	00 0000	Δ	-
53	0h1635	트립 출력 온 딜레이	TripOut OnDly	0.00	~ 100.00(sec)	0.00	0	-
54	0h1636	트립 출력 오프 딜레이	TripOut OffDly	0.00 ~ 100.00(sec) (0.00	0	-
55	0h1637	타이머 온 딜레이	TimerOn Delay	0.00 ~ 100.00(sec)		0.00	0	-
56	0h1638	타이머 오프 딜레이	TimerOff Delay	0.00	~ 100.00(sec)	0.00	0	-
57	0h1639	검출 주파수	FDT Frequency	0.00 주피	~ 최대 수(Hz)	30.00	0	-
58	0h163A	검출 주파수 폭	FDT Band	0.00 주피	~ 최대 수(Hz)	10.00	0	-
61	0h163D	펄스 출력 항목	TO Mode	0 1 2 3 4 7 8 9	Frequency Output Current Output Voltage DCLink Voltage Output Power Target Freq Ramp Freq	0: Frequency	0	-

Γ

코드	통신 번지	명칭	LCD 표시		설정 범위	초기 값	속성*	참조
				10	PID Fdb Value			
				11	PID Output			
				12	Constant			
				13	EPID1 Output			
				14	EPID1 RefVal			
				15	EPID1 FdbVal			
				16	EPID2 Output			
				17	EPID2 RefVal			
				18	EPID2 FdbVal			
62	0h163E	펄스 출력 게인	TO Gain	-100	0.0~ 1000.0(%)	100.0	0	-
63	0h163F	펄스 출력 바이어스	TO Bias	-100	0.0~100.0(%)	0.0	0	-
64	0h1640	펄스 출력 필터	TO Filter	0 ~ [·]	10000(msec)	5	0	-
65	0h1641	펄스 출력 상수 출력2	TO Const %	0.0 -	~ 100.0(%)	0.0	0	-
66	0h1642	펄스 출력 모니터	TO Monitor	0.0 -	~ 1000.0(%)	0.0	x	-

8.7 통신 기능 그룹(COM)

ſ

회색 음영 부분은 관련 코드가 선택되어 있는 경우에만 나타남 *O: 운전 중 쓰기 가능, Δ: 운전 정지 시 쓰기 가능, X: 쓰기 금지

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
00	-	점프 코드	Jump Code	1~9	99	20	0	<u>p.65</u>
01	0h1701	내장형 통신 인버터 ID	Int485 St ID	1~1	MaxComID ⁴⁵	1	0	<u>p.346</u>
				0	ModBus RTU			
				2	LS INV 485	_		
02	0h1702	내상영 동신	Int485 Proto	4	BACnet	0: ModBus	0	p.346
		프로토콜		5	Metasys-N2	RTU	-	<u>p.o.re</u>
				6 ⁴⁶	ModBus Master			
				0	1200 bps			1
				1	2400 bps			
				2	4800 bps			
				3	9600 bps			
03	0h1703	내성영 공신	Int485 BaudR	4	19200 bps	3:	0	p.346
		속도		5	38400 bps	9600 bps		
				6	56 Kbps			
				7	76.8 kbps			
				8	115.2 Kbps ⁴⁷			
				0	D8/PN/S1			
04	061704	내장형 통신	Int/185 Mada	1	D8/PN/S2	0:	0	n 246
	011704	프레임 설정	INT485 IVIODE	2	D8/PE/S1	D8/PN/S1	10	<u>p.346</u>
		쓰레임 실성		3	D8/PO/S1			

⁴⁵ MaxComID는 AP1-40의 설정이 (4:Serve Drv)로 설정되는경우는 8, COM-02의 설정이 (4:BACnet)으로 설정되는 경우는 127, 그외의 경우는 250 입니다

⁴⁶ COM-02 의 (6: ModBus Master)파라메터는 AP1-40 AP1-40 의 설정이 2~3 으로

설정된경우 자동으로 선택되는 파라메터로서 사용자가 임의로 선택할수 없음

47 115200bps

코드	통신 번지	명칭	LCD 표시	설정	범위	초기 값	속성*	참조
05	0h1705	수신 후 송신 딜레이	Resp Delay	0 ~ ′	1000(msec)	5	0	<u>p.346</u>
06 ⁴⁸	0h1706	통신 옵션 S/W 버전	FBus S/W Ver	-		-	0	-
07	0h1707	통신 옵션 인버터 ID	FBus ID	0~2	255	1	0	-
08	0h1708	필드버스 통신 속도	FBUS BaudRate	-		12Mbps	0	-
09	0h1709	통신 옵션 LED 상태	FieldBus LED	-		-	0	-
28	0h171C	USB 프로토콜	USB Protocol	0 2	Modbus RTU LS INV 485	2:LS INV 485	0	=
30	0h171E	출력 파라미터 개수	ParaStatus Num	0~8	3	3	0	<u>p.352</u>
31	0h171F	출력 통신 번지 1	Para Stauts-1	0000) ~ FFFF Hex	000A	0	<u>p.352</u>
32	0h1720	출력 통신 번지 2	Para Stauts-2	0000) ~ FFFF Hex	000E	0	<u>p.352</u>
33	0h1721	출력 통신 번지 3	Para Stauts-3	0000) ~ FFFF Hex	000F	0	<u>p.352</u>
34	0h1722	출력 통신 번지 4	Para Stauts-4	0000) ~ FFFF Hex	0000	0	<u>p.352</u>
35	0h1723	출력 통신 번지 5	Para Stauts-5	0000) ~ FFFF Hex	0000	0	<u>p.352</u>
36	0h1724	출력 통신 번지 6	Para Stauts-6	0000) ~ FFFF Hex	0000	0	<u>p.352</u>

⁴⁸ COM-06~COM-19 코드는 통신 옵션 카드 장착한 경우에만 나타남. 자세한 사항은 통신 옵션 매뉴얼 참조

코드	통신 번지	명칭	LCD 표시	설정 벽	범위	초기 값	속성*	참조
37	0h1725	출력 통신 번지 7	Para Stauts-7	0000	~ FFFF Hex	0000	0	<u>p.352</u>
38	0h1726	출력 통신 번지 8	Para Stauts-8	0000	~ FFFF Hex	0000	0	<u>p.352</u>
50	0h1732	입력 파라미터 개수	Para Ctrl Num	0~8		2	0	<u>p.352</u>
51	0h1733	입력 통신 번지 1	Para Control-1	0000	~ FFFF Hex	0005	0	<u>p.352</u>
52	0h1734	입력 통신 번지 2	Para Control-2	0000	~ FFFF Hex	0006	0	<u>p.352</u>
53	0h1735	입력 통신 번지 3	Para Control-3	0000	~ FFFF Hex	0000	0	<u>p.352</u>
54	0h1736	입력 통신 번지 4	Para Control-4	0000	~ FFFF Hex	0000	0	<u>p.352</u>
55	0h1737	입력 통신 번지 5	Para Control-5	0000	~ FFFF Hex	0000	0	<u>p.352</u>
56	0h1738	입력 통신 번지 6	Para Control-6	0000	~ FFFF Hex	0000	0	<u>p.352</u>
57	0h1739	입력 통신 번지 7	Para Control-7	0000	~ FFFF Hex	0000	0	<u>p.352</u>
58	0h173A	입력 통신 번지 8	Para Control-8	0000	~ FFFF Hex	0000	0	<u>p.352</u>
70	0h1746	통신 다기능 입력 1	Virtual DI 1	0	None	0:None	0	<u>p.376</u>
71	0h1747	통신 다기능 입력 2	Virtual DI 2	1	Fx	0:None	0	<u>p.376</u>
72	0h1748	통신 다기능 입력 3	Virtual DI 3	2	Rx	0:None	0	<u>p.376</u>

코드	통신 번지	명칭	LCD 표시	설정	범위	초기 값	속성*	참조
73	0h1749	통신 다기능 입력 4	Virtual DI 4	3	RST	0:None	0	<u>p.376</u>
74	0h174A	통신 다기능 입력 5	Virtual DI 5	4	External Trip	0:None	0	<u>p.376</u>
75	0h174B	통신 다기능 입력 6	Virtual DI 6	5	вх	0:None	0	<u>p.376</u>
76	0h174C	통신 다기능 입력 7	Virtual DI 7	6	JOG	0:None	0	<u>p.376</u>
				7	Speed-L			
				8	Speed-M			
				9	Speed-H			
				11	XCEL-L			
				12	XCEL-M			
				13	XCEL-H	2		
				14	XCEL-Stop			
				15	Run Enable			
				16	3-wire			
				17	2 nd source			
				18	Exchange			
				19	Up			
		토시 다기느		20	Down			
77	0h174D		Virtual DI 8	22	U/D Clear	0:None	0	<u>p.376</u>
		មមិ		23	Analog Hold			
				24	I-Ierm Clear			
				25	Openloop			
				26	PID Gain 2			
				27	PID Ref Change			
				28	2 nd Motor			
				29	Interlock1			
				30	Interlock2			
			30 31 32 33	31	Interlock3			
				32	Interlock4			
				33	Interlock5			
				34	Pre Excite	\dashv		

위치가 이동되었습니다.

٢

⁵⁰ COM-86,20,21,22,23 의 파라메터가 SW1.22 버전부터 각 COM-82,83,84,85,86 파라메터로

옵션 매뉴얼 참조

49	COM-70~77 의	53~55	파라메터는	확장	Ю	옵션	장착시	사용가능,	자세한	사항은	확장 🛛	0
0	여 메니어 차고											

				49	Chg			
				50	PID Step Ref L			
				51	PID Step Ref M			
				52	PID Step Ref H			
				53 ⁴⁹	Interlock6			
				54	Interlock7			
				55	Interlock8			
				56	HAND State			
82 ⁵⁰	0h1756	통신 다기능 인력 모니터	Virt DI Status	0000 1111	0000 – 1111	0000 0000	Δ	<u>p.349</u>

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
				35	Timer In			
				37	dis Aux Ref			
				38	FWD JOG			
				39	REV JOG			
				40	Fire Mode			
				41	EPID1 Run			
				42	EPID1 ItermClr			
				43	Time Event En			
				44	Pre Heat			
				45	Damper Open			
				46	Pump Clean			
				47	EPID2 Run			
				48	EPID2 ItermClr			
				49	Sleep Wake Chg			
				50	PID Step Ref L			
				51	PID Step Ref M			
				52	PID Step Ref H			
				53 ⁴⁹	Interlock6			
				54	Interlock7			
				55	Interlock8			
				56	HAND State			
82 ⁵⁰	0h1756	통신 다기능 입력 모니터	Virt DI Status	0000 1111	0000 – 1111	0000 0000	Δ	<u>p.349</u>

코드	통신 번지	명칭	LCD 표시	설경	성 범위	초기 값	속성*	참조
83	0h1714	BACnet 최대 마스터 수	BAC Max Master	1~	127	127	0	<u>p.382</u>
84	0h1715	BACnet 디바이스 번호 1	BAC Dev Inst1	0 ~ 4194		237	0	<u>p.382</u>
85	0h1716	BACnet 디바이스 번호 2	BAC Dev Inst2	0 ~ 999		0	0	<u>p.382</u>
86	0h1717	BACnet 비밀 번호	BAC PassWord	0~	32767	0	0	<u>p.382</u>
96	0h173C	통신 운전 자동 재시동	PowerOn Resume	0 1	No Yes	0: No	Δ	-

8.8 응용 기능 그룹(PID)

회색 음영 부분은 관련 코드가 선택되어 있는 경우에만 나타남

Unit MAX 는 PID Unit 100%(PID-68)의 값이고, Unit Min 값은 (2xPID Unit 0%(PID-67)-PID Unit 100%) 값, Unit Default 값은 (PID Unit 100%-PID Unit 0%)/2 의 값, Unit Band 값은 Unit 100%-Unit 0%의 값.

*O: 운전 중 쓰기 가능, Δ: 운전 정지 시 쓰기 가능, X: 쓰기 금지

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
00	-	점프 코드	Jump Code	1~9	99	50	0	<u>p.65</u>
01	061901	DID 기느 서태		0	No	0·No	Δ	_
01	011001			1	Yes	0.110		-
02 0h18	064000	E-PID 선택	E-PID Sel	0	No	0·No	0	
	011602			1	Yes	0.110		
03	0h1803	PID 출력 모니터	PID Output	-		-	х	-
04	0h1804	PID 레퍼런스	PID Ref Value	-		-	x	-
		노니디						
05	0h1805	PID 피드백 모니터	PID Fdb Value	-		-	х	-

코드	통신 번지	명칭	LCD 표시	설정	범위	초기 값	속성*	참조
06	0h1806	PID 에러 모니터 값	PID Err Value	-		-	х	-
				0	KeyPad			
				1	V1			
				3	V2	-		
				4	12	-		
		PID 기준 1 소스	PID Ref 1 Src	5	Int.485	0: Kevpad		
10	0h180A	서태		6	Fieldbus		Δ	-
				8	Pulse			
				9	EPID1 Output			
				10 ⁵¹	V3			
				11	13			
11	0h180B	PID 기준 1 키패드 값	PID Ref 1 Set	Unit I Max	Min ~ Unit	Unit Default	0	-
				0	None			
				1	V1			
				3	V2			
				4	12	-		
				6	Pulse	-		
		PID 기준 1 보조	חום	7	Int 485	-		
12	0h180C	스스 서태	Ref1AuxSrc	8	FieldBus	0: None	Δ	-
				10	EPID1 Output			
				11	E-PID Fdb Val			
				12 ⁵²	V3			
				13	13	-		
		미미 기즈 4 비조		0	M + (G * A)			
13	0h180D F	h180D	E PID Ref1AuxMod 2	1	M * (G * A)	0:M+(G*A)))	0	-
15		모드 선택		2	M / (G * A)		0	

⁵¹ PID-10의 10~11 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

⁵² PID-12 의 12~13 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

코드	통신 번지	명칭	LCD 표시	설정 범위 .		초기 값	속성*	참조
				3	M+(M*(G*A))			
				4	M+G*2*(A- 50)			
				5	M*(G*2*(A- 50))			
				6	M/(G*2*(A- 50))			
				7	M+M*G*2*(A -50)			
				8	(M-A)^2			
				9	M^2+A^2			
				10	MAX(M,A)			
				11	MIN(M,A)			
				12	(M + A)/2			
				13	Root(M+A)			
14	0h180E	PID 기준 1 보조 게인	PID Ref1 Aux G	-200.	0 ~ 200.0(%)	0.0	0	-
				0	Keypad			
				1	V1			
				3	V2			
				4	12			
		PID 기주 2 소스		5	Int 485			
15	0h180F	서태	PID Ref 2 Src	6	Fieldbus	0:KeyPad	Δ	-
		신택		8	Pulse			
				9	E-PID Output			
				10 ⁵³	V3			
				11	13			
16	0h1810	PID 기준 2 키패드 값	PID Ref 2 Set	Unit I Max	vlin ~ Unit	Unit Default	0	-
				0	None			
17	061011	PID 기준 2 보조	PID	1	V1	Ollona		
	0h1811	소스 선택	[택 Ref2AuxSrc 3	3	V2	UINONE	Δ	-
				4	12	1		

⁵³ PID-15의 10~11 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

코드	통신 번지	명칭	LCD 표시	설정	범위	초기 값	속성*	참조
				6	Pulse			
				7	Int 485			
				8	FieldBus			
				10	EPID1			
				10	Output			
				11	EPID1 Fdb Val			
				12 ⁵⁴	V3			
				13	13			
				0	M + (G * A)			
				1	M * (G * A)			
				2	M / (G * A)			
				3	M+(M*(G*A))	<u>)</u>	0	
				4	M+G*2*(A- 50)			
	0h1812	PID 기준 2 보조 모드 선택		5	M*(G*2*(A- 50))			
18			PID Ref2AuxMod	6	M/(G*2*(A- 50))	0:M+(G*A		-
				7	M+M*G*2*(A -50)			
				8	(M-A)^2			
				9	M^2+A^2			
				10	MAX(M,A)			
				11	MIN(M,A)			
				12	(M + A)/2			
				13	Root(M+A)			
19	0h1813	PID 기준 2 보조 게인	PID Ref2 Aux G	-200.	0 ~ 200.0(%)	0.0	0	-
				0	V1			
				2	V2	1		
			PID Fdb	3	12			
20 (0h1814	PID 피느백 선택	Source	4	Int 485	U:V1	Δ	-
			5 7	5	FieldBus			
				7	Pulse	1		

Γ

⁵⁴ PID-17 의 12~13 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

전체 기능표 알아두기

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
				8	EPID1 Output			
				9	EPID1 Fdb Val			
				10 ⁵⁵	V3			
_				11	13			
				0	None			
				1	V1			
				3	V2			
				4	12			
				6	Pulse	0 : None		
	0h1815	PID 피드백 보조		7	Int 485			
21		, 18 기 <u></u> 기 포포	Src	8	FieldBus		Δ	-
				10	EPID1 Output			
				11	EPID1 Fdb Val			
				12 ⁵⁶	V3			
				13	13			
				0	M + (G * A)			
				1	M * (G * A)			
				2	M / (G * A)			
				3	M+(M*(G*A))			
22	061916	PID 피드백 보조	PID Fdb	4	M+G*2*(A- 50)	0:M+(G*A	0	_
22 (011010	모드 선택	AuxMod	5	M*(G*2*(A- 50)))	0	
			6	6	M/(G*2*(A- 50))			
				7	M+M*G*2*(A-50)			
				8	(M-A)^2	-		

٦

⁵⁵ PID-20의 10~11 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

⁵⁶ PID-21 의 12~13 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

436 | LSELECTRIC

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
				9 M^2+A^2 10 MAX(M,A) 11 MIN(M,A) 12 (M + A)/2 13 Root(M+A)			
23	0h1817	PID 피드백 보조 게인	PID Fdb Aux G	-200.0 ~ 200.0(%)	0.0	0	-
24	0h1818	PID 피드백 밴드	PID Fdb Band	0.00 ~ Unit Band	0.00	0	-
25	0h1819	PID 제어기 비례 게인 1	PID P-Gain 1	0.00 ~ 300.00(%)	50.00	0	-
26	0h181A	PID 제어기 적분 시간 1	PID I-Time 1	0.0 ~ 200.0(sec)	10.0	0	-
27	0h181B	PID 제어기 미분 시간 1	PID D-Time 1	0.00 ~ 1.00(sec)	0.00	0	-
28	0h181C	PID 제어기 전향 보상 게인	PID FF-Gain	0.0 ~ 1000.0(%)	0.0	0	-
29	0h181D	PID 출력 필터	PID Out LPF	0.00 ~ 10.00(s)	0.00	0	-
30	0h181E	PID 출력 상한	PID Limit Hi	PID Limit Lo ~ 100.00	100.00	0	-
31	0h181F	PID 출력 하한	PID Limit Lo	-100.00 ~ PID Limit Hi	0.00	0	-
32	0h1820	PID 제어기 비례 게인 2	PID P-Gain 2	0.00 ~ 300.00(%)	50.0	0	-
33	0h1821	PID 제어기 적분 시간 2	PID I-Time 2	0.0 ~ 200.0(sec)	10.0	0	-
34	0h1822	PID 제어기 미분 시간 2	PID D-Time 2	0.00 ~ 1.00(sec)	0.00	0	-
35	0h1823	PID 출력 모드	PID Out Mode	0PID Output1PID+Main Freq2PID+EPID1Out0ut3PID+EPID1+M	4:PID or Main	0	-

코드	통신 번지	명칭	LCD 표시	설정	방 범 위	초기 값	속성*	참조
				4	PID or Main			
36	0h1824	PID 출력 반전	PID Out Inv	0 1	No Yes	0:No	Δ	-
37	0h1825	PID 출력 스케일	PID Out Scale	0.1	~ 1000.0(%)	100.0	Δ	-
40	0h1828	PID 다단 기준 값 1	PID Step Ref 1	Uni Max	t Min ~ Unit x	Unit Default	0	-
41	0h1829	PID 다단 기준 값 2	PID Step Ref 2	Uni Max	t Min ~ Unit x	Unit Default	0	-
42	0h182A	PID 다단 기준 값 3	PID Step Ref 3	Uni Max	t Min ~ Unit x	Unit Default	0	-
43	0h182B	PID 다단 기준 값 4	PID Step Ref 4	Uni Max	t Min ~ Unit x	Unit Default	0	-
44	0h182C	PID 다단 기준 값 5	PID Step Ref 5	Uni Max	t Min ~ Unit x	Unit Default	0	-
45	0h182D	PID 다단 기준 값 6	PID Step Ref 6	Uni Max	t Min ~ Unit x	Unit Default	0	-
46	0h182E	PID 다단 기준 값 7	PID Step Ref 7	Uni Max	t Min ~ Unit x	Unit Default	0	-
50	0h1832	PID 제어기 단위 선택	PID Unit Sel	Unii 0 1 2 3 4 5 6 7 8 9 10 11 12 13	t List 참조 CUST % PSI °F °C inWC inM mBar Bar Pa Bar Pa kPa Hz rpm	1: %	0	-

코드	통신 번지	명칭	LCD 표시	설정	범위	초기 값	속성*	참조
				14	A			
				15	kW			
				16	HP			
				17	mpm			
				18	ft			
				19	m/s			
				20	m3/s			
				21	m3/m			
				22	m 3/h			
				23	l/s			
				24	l/m			
				25	l/h			
				26	kg/s			
				27	kg/m			
				28	kg/h			
				29	gl/s			
				30	gl/m			
				31	gl/h			
				32	ft/s			
				33	f3/s			
				34	f3/m			
				35	f3/h			
				36	lb/s			
				37	lb/m			
				38	lb/h			
				39	ppm			
				40	pps			
				0	x100			
				1	x10			
51	0h1833	PID 단위 스케일	PID Unit	2	x 1	2:x 1	0	-
			Scale	3	x 0.1			
				4	x 0.01			
				X1	-30000 ~ Unit	חוח		
				00	Max	HU 도이서 편이		
52	0h1834	PID 제어 0%	PID Unit 0%	X1	-3000.0 ~	50 실징에	0	_
52 (011034	설정치	X1	0	Unit Max	따라 다라	0	-
	Ē			X1	-300.00 ~ Unit Max	범위 다름		

코드	통신 번지	명칭	LCD 표시	설정	범위	초기 값	속성*	참조
				X0. 1	-30.000 ~ Unit Max			
_				X0. 01	-3.0000 ~ Unit Max			
	0h1835	PID 제어 100% 설정치	PID Unit 100%	X1 00	Unit Min ~ 30000			
				X1 0	Unit Min ~ 3000.0	PID 50 설정에 _ 따라 범위 다름		
53				X1	Unit Min ~ 300.00		0	-
				X0. 1	Unit Min ~ 30.000			
				X0. 01	Unit Min ~ 3.0000			

8.9 EPID 기능 그룹(EPID)⁵⁷

회색 음영 부분은 관련 코드가 선택되어 있는 경우에만 나타남

Unit MAX 는 EPID1(EPID2) Unit 100%의 값이고, Unit Min 값은 (2xEPID1(EPID2) Unit 0%-

EPID1(EPID2) Unit 100%) 값, Unit Default 값은 (EPID1(EPID2) Unit 100%-EPID1(EPID2) Unit 0%)/2 의 값

*O: 운전 중 쓰기 가능, Δ: 운전 정지 시 쓰기 가능, X: 쓰기 금지

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
00	-	점프 코드	Jump Code	1~9	9	1	0	<u>p.65</u>
04	0-1001			0	None	Orblana	~	
01	001901		EPIDT Mode	1	Always ON	U:INONE	0	-

⁵⁷ EPID 기능 그룹은 PID-02 코드가 Yes 일 때 나타남

코드	통신 번지	명칭	LCD 표시	설정	범위	초기 값	속성*	참조
		EPID1 Mode		2	During Run			
		선택		3	DI dependent			
02 ⁵⁸	0h1902	EPID1 출력 모니터 값	EPID1 Output	-100).00 ~ 100.00%	0.00	x	-
03	0h1903	EPID1 기준 모니터 값	EPID1 Ref Val	-		-	x	-
04	0h1904	EPID1 피드백 모니터 값	EPID1 Fdb Val	-		-	x	-
05	0h1905	EPID1 에러 모니터 값	EPID1 Err Val	-		-	x	-
				0	Keypad			
				1	V1			
			EPID1 Ref Src	3	V2	0:KeyPad	Δ	
				4	12			-
06	0h1906	EPID1 지명		5	Int 485			
		소스 선택		6	FieldBus			
				8	Pulse			
				9 ⁵⁹	V3			
				10	13			
07	0h1907	EPID1 키패드 지령값	EPID1 Ref Set	Unit Max	Min ~ Unit	Unit Min	0	-
				0	V1			
08 (2	V2			
	0h1908	EPID1 피드백	FPID1 Edb Src	3	12	0.1/1	0	_
	011000	h1908 소스 선택 Ef	EPID1 Fab Src 4 5 7	4	Int485	0.01	0	-
				5	FieldBus			
				7	Pulse			

⁵⁸ EPID-02~EPID-20 코드는 EPID-01 코드가 0(None)이 아닐 때 나타남.

⁵⁹ EPI-06의 9~10 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

코드	통신 번지	명칭		LCD 3	표시	설정	볃	<u></u> 남위	초기 값	속성*	참조
						8 ⁶⁰ 9	V: 13	3	-		
09	0h1909	EPID1	비례게인	EPID1	P-Gain	0.00)~	300.00 (%)	50.00	0	-
10	0h190A	EPID1	적분시간	EPID1	I-Time	0.0 -	- 2	200.0(sec)	10.0	0	-
11	0h190B	EPID1	미분시간	EPID1	D-Time	0.00	~ ا	1.00 (sec)	0.00	0	-
12	0h190C	EPID1 게인	전향보상	EPID1	FF-Gain	0.0 -	~ 1	000.0 (%)	0.0	0	-
13	0h190D	EPID1 필터	출력	EPID1 LPF	Out	0.00	- ۱	10.00 (sec)	0.00	0	-
14	0h190E	EPID1 상한	출력	EPID1	Limit Hi	EPID1 Limit Lo ~ 100.00		Limit Lo ~)	100.00	0	-
15	0h190F	EPID1 하한	출력	EPID1	Limit Lo	-100 Limi).0 t ⊢	0 ~ EPID1 l i	0.00	0	-
16	0h1910	EPID1 반전	출력	EPID1	Out Inv	0 1	N Ye	o es	0:No	0	-
17	0h1911	EPID1	단위	EPID1	Unit Sel	EPII 참조	ט <u>ו</u>	Jnit 상세표	1:%	0	-
		FPID1	단위			0		X100 X10			
18	0h1912	Scale	L	EPID1	Unit Scl	2 3		X1 X0.1	2:X1	0	-
						4		X0.01			
19	0h1913	EPID1	단위 0%	EPID1	Unit0%	X10	0	-30000 ~ Unit Max	Unit 설정에	0	-
19 (Dh1913 급	0h1913 값		EPID1 Unit0% -		X10		-3000.0 ~ Unit Max	따라 다름		

⁶⁰ EPI-08의 8~9 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

442 | LSELECTRIC

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조	
				X1		-300.00 ~ Unit Max			
				X0.1		-30.000 ~ Unit Max			
				X0.0)1	-3.0000 ~ Unit Max			
				X10	0	Unit Min ~ 30000			
		EPID1 단위		X10		Unit Min ~ 3000.0	Unit		
20	0h1914	100%값	Unit100%	X1		Unit Min ~ 300.00	설정에 따라 다르	0	
				X0.1 X0.01		Unit Min ~ 30.000	떠니 니금		
						Unit Min ~ 3.0000			
				0	N	one			
31	0h191F	EPID2 Mode	EPID2 Mode	1 Alw		ways ON	0·None	0	-
01	0111011	선택		2	Dı	uring Run		Ŭ	
				3	DI	dependent			
32 ⁶¹	0h1920	EPID2 출력 모니터 값	EPID2 Output	-100	.00	0~100.00%	0.00	х	-
33	0h1921	EPID2 기준 모니터 값	EPID2 Ref Val	-			-	х	-
34	0h1922	EPID2 피드백 모니터 값	EPID2 Fdb Val	-			-	x	-
35	0h1923	EPID2 에러 모니터 값	EPID2 Err Val	-			-	х	-
				0	Ke	eypad			
36 0		EPID2 지령		1 V1					
	0h1924 ^ᄃ 소	2h1924 소스 선택 EF	EPID2 Ref Src 3	3	V2	2	0: Keypad	Δ	-
				4	12				

⁶¹ EPID-32~EPID-50 코드는 EPID-31 코드가 0(None)이 아닐 때 나타남..

전체 기능표 알아두기

코드	통신 번지	명칭	LCD 표시	설정 범위 👘		초기 값	속성*	참조
				5	Int 485			
				6	FieldBus			
				8	Pulse			
				9 ⁶²	V3			
				10	13			
37	0h1925	EPID2 키패드 지령값	EPID2 Ref Set	Unit	Min~Unit Max	Unit Min	0	-
				0	V1			
				2	V2			
				3	12			
20	061000	EPID2 피드백		4	Int 485	0.1/1	0	
30 (011920	소스 선택	EPIDZ FOD SIC	5	FieldBus	0.01	Ŭ	-
				7	Pulse			
				8 63	V3			
				9	13			
39	0h1927	EPID2 비례게인	EPID2 P-Gain	0.00) ~ 300.00 (%)	50.0	0	-
40	0h1928	EPID2 적분시간	EPID2 I-Time	0.0	~ 200.0 (sec)	10.0	0	-
41	0h1929	EPID2 미분시간	EPID2 D-Time	0.00) ~ 1.00 (sec)	0.00	0	-
42	0h192A	EPID2 전향보상 게인	EPID2 FF-Gain	0.0	~ 1000.0 (%)	0.0	0	-
43	0h192B	EPID2 출력 필터	EPID2 Out LPF	0.00) ~ 10.00 (sec)	0.00	0	-
44	0h192C	EPID2 출력 상한	EPID2 Limit Hi	EPI 100	D2 Limit Lo ~ .00	100.00	0	-

٦

⁶² EPI-36 의 9~10 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

⁶³ EPI-38 의 8~9 파라메터는 확장 IO 옵션 장착시 사용가능, 자세한 사항은 확장 IO 옵션 매뉴얼 참조

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
45	0h192D	EPID2 출력 하한	EPID2 Limit Lo	-100.00 ~ EPID2 Limit Hi		0.00	0	-
46	0h192E	EPID2 출력 반전	EPID2 Out Inv	0 No 1 Yes		0:No	0	-
47	0h192F	EPID2 단위	EPID2 Unit Sel	EPID	Unit 상세표	0:CUST	0	-
				0	X100		0	
				1	X10			-
48	0h1930	EPID2 한귀 Scale	EPID2 Unit Scl	2	X1	2:X1		
		Scale		3	X0.1			
				4	X0.01			
	0h1931	EPID2 단위 0% 값	EPID2 Unit0%	X100	-30000 ~ Unit Max		0	-
				X10	-3000.0 ~ Unit Max	Unit 설정에 -따라 다름		
49				X1	-300.00 ~ Unit Max			
				X0.1	-30.000 ~ Unit Max			
				X0.01	-3.0000 ~ Unit Max			
50	0h1932	EPID2 단위 h1932 100%값	EPID2 Unit100%	X100	Unit Min ~ 30000		0	-
				X10	Unit Min ~ 3000.0	Unit		
				X1	Unit Min ~ 300.00	설정에		
				X0.1	Unit Min ~ 30.000	띠다 나금		
				X0.01	Unit Min ~ 3.0000			

8.10 Application 1 기능 그룹(AP1)

ſ

회색 음영 부분은 관련 코드가 선택되어 있는 경우에만 나타남

Unit MAX 는 PID Unit 100%의 값이고, Unit Min 값은 (2xPID Unit 0%-PID Unit 100%) 값, Unit Default 값은 (PID Unit 100%-PID Unit 0%)/2 의 값, Unit Band 값은 Unit 100%-Unit 0%의 값. *O: 운전 중 쓰기 가능, Δ: 운전 정지 시 쓰기 가능, X: 쓰기 금지

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
00	-	점프 코드	Jump Code	1~99		20	0	<u>p.65</u>
05	0h1A05	슬립 부스트 량	Sleep Bst Set	0.00 ~ Unit Max		0.00	0	-
06	0h1A06	슬립 부스트 속도	Sleep Bst Freq	0.00, Low Freq~ High Freq		60.00	0	-
07	0h1A07	PID 슬립모드 1 지연시간	PID Sleep 1 DT	0.0 600) ~ 00.0(sec)	20.0	0	-
08	0h1A08	PID 슬립모드 1 주파수	PID Sleep1Freq	0.0 Hig	0, Low Freq∼ gh Freq	0.00	0	-
09	0h1A09	PID 웨이크업 1 지연시간	PID WakeUp1 DT	0.0 ~ 6000.0(sec)		20.0	0	-
10	0h1A0A	PID 웨이크업 1 값	PID WakeUp1Dev	0.0 Ba	10 ~ Unit nd	20.00	0	-
11	0h1A0B	PID 슬립모드 2 지연시간	PID Sleep 2 DT	0.0 600) ~ 00.0(sec)	20.0	0	-
12	0h1A0C	PID 슬립모드 2 주파수	PID Sleep2Freq	0.00, Low Freq~ High Freq		0.00	0	-
13	0h1A0D	PID 웨이크업 2 지연시간	PID WakeUp2 DT	0.0 ~ 6000.0(sec)		20.0	0	-
14	0h1A0E	PID 웨이크업 2 값	PID WakeUp2Dev	0.00 ~ Unit Band		20.00	0	-
20		Soft Fill 기느	Soft Fill Sel	0 No				
	0h1A14	사용 유무		1	Yes	0 : No	0	-
21	0h1A15	프리 PID 운전 주파수	Pre-PID Freq	Low Freq~ High Freq		30.00	0	-

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
22	0h1A16	프리 PID 유지 시간	Pre-PID Delay	0.0 ~ 600.0(sec)		60.0	0	-
23	0h1A17	Soft Fill 탈출값	Soft Fill Set	Unit Min ~ Unit Max		20.00	0	-
24	0h1A18	Soft Fill 레퍼런스 증가량	Fill Step Set	0.00 ~ Unit Band		2.00	0	-
25	0h1A19	Soft Fill 레퍼런스 증가 주기	Fill Step Time	0 ~ 9999(sec)		20	0	-
26	0h1A1A	Soft Fill 변화량	Fill Fdb Diff	0.00 ~ Unit Band		0.00	0	-
30	0h1A1E	Flow Comp 기능 사용 유무	Flow Comp Sel	0	No		0	-
				1	Yes	0:NO		
31	0h1A1F	Max Comp 량	Max Comp Value	0.00~Unit Band		0.00	0	-
	0h1A28	MMC 기능 사용 여부 선택	MMC Sel	0	None		Δ	-
				1	Single Ctrl			
				2	Multi Follower			
40 ⁶⁴				3	Multi Master	0:None		
				4	Serve Drv			
44.65	061420	바이패스 선택	Regul Bypass	0	No	O.No	Δ	-
4103	Un1A29			1	Yes	U:NO		
42	0h1A2A	보조모터 개수선택	Num of Aux	1~ 5		5	Δ	-
43	0h1A2B	시작 보조 모터 선택	Starting Aux	1~5		1	Δ	-

⁶⁴ AP1-40 코드를 사용하려면 PID 그룹 1 번을 YES 로 설정해야 함

⁶⁵ AP1-41 코드를 사용하려면 AP1-40 코드를 'Single Ctrl'로 설정해야 함

코드	통신 번지	명칭	LCD 표시	설	정 범위	초기 값	속성*	참조
44	0h1A2C	보조 모터 동작 개수 표시	Aux Motor Run	-		-	х	-
45	0h1A2D	1~4 보조모터의 우선순위 표시	Aux Priority 1	-		-	x	-
46	0h1A2E	5~8 보조모터의 우선순위 표시	Aux Priority 2	-		-	х	-
48	0h1A30	정지 시 보조모 터 동작 설정	Aux All Stop	0 1	No Yes	1:Yes	0	-
49	0h1A31	보조 모터 정지 순서	Aux On/Off Seq	0 1 2	FILO FIFO OpTime Order	0:FILO	Δ	-
50	0h1A32	보조 모터 동작 압력차	Aux Start Diff	0 ~	- 100(%)	2	0	-
51	0h1A33	보조모터수 감 소시 주모터 가 속시간	Aux Acc Time	0.0) ~ 600.0(sec)	2.0	0	-
52	0h1A34	보조모터수 증 가시 주모터 감 속시간	Aux Dec Time	0.0) ~ 600.0(sec)	2.0	0	-
53	0h1A35	보조 모터 기동 지연 시간	Aux Start DT	0.0	~3600.0(sec)	60.0	0	-
54	0h1A36	보조 모터 정지 지연 시간	Aux Stop DT	0.0~3600.0(sec)		60.0	0	-
55	0h1A37	오토 체인지 모 드 선택	Auto Ch Mode	0 1 2	None AUX Exchange Main Exchange	1:AUX Exchang e	Δ	-
56	0h1A38	오토 체인지 시 간	Auto Ch Time	00	:00 ~ 99:00	72:00	0	-

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
57	0h1A39	오토 체인지 주 파수	Auto Ch Level	Low Freq ~ High Freq	20.00	0	-
58	0h1A3A	오토체인지운전 시간	Auto Op Time	-	-	х	-
59	0h1A3B	보조 모터 정지 압력차	Aux Stop Diff	0 ~ 100(%)	2	0	
60 ⁶⁶	0h1A3C	Multi Master 동 작시 Aux Motor 의 목표 주파수	Follower Freq	Low Freq~ High Freq	60.00	0	
61	0h1A3D	제 1 보조 모터 기동 주파수	Start Freq 1	Freq Low Limit ~ Freq High limit(Hz)	45.00	0	-
62	0h1A3E	제 2 보조 모터 기동 주파수	Start Freq 2	Low Freq ~ High Freq	45.00	0	-
63	0h1A3F	제 3 보조 모터 기동 주파수	Start Freq 3	Low Freq ~ High Freq	45.00	0	-
64	0h1A40	제 4 보조 모터 기동 주파수	Start Freq 4	Low Freq ~ High Freq	45.00	0	-
65	0h1A41	제 5 보조 모터 기동 주파수	Start Freq 5	Low Freq ~ High Freq	45.00	0	-
66	0h1A42	제 6 보조 모터 기동 주파수	Start Freq 6	Low Freq ~ High Freq	45.00	0	
67	0h1A43	제 7 보조 모터 기동 주파수	Start Freq 7	Low Freq ~ High Freq	45.00	0	
68	0h1A44	제 8 보조 모터 기동 주파수	Start Freq 8	Low Freq ~ High Freq	45.00	0	

Γ

⁶⁶ API-40 MMC Sel 이 2 또는 3 으로 설정되어야 파라미터 확인 가능
코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
70	0h1A46	제 1 보조 모터 정지 주파수	Stop Freq 1	Low Freq ~ High Freq	20.00	0	-
71	0h1A47	제 2 보조 모터 정지 주파수	Stop Freq 2	Low Freq ~ High Freq	20.00	0	-
72	0h1A48	제 3 보조 모터 정지 주파수	Stop Freq 3	Low Freq ~ High Freq	20.00	0	-
73	0h1A49	제 4 보조 모터 정지 주파수	Stop Freq 4	Low Freq ~ High Freq	20.00	0	-
74	0h1A4A	제 5 보조 모터 정지 주파수	Stop Freq 5	Low Freq ~ High Freq	20.00	0	-
75	0h1A4B	제 6 보조 모터 정지 주파수	Stop Freq 6	Low Freq ~ High Freq	20.00	0	
76	0h1A4C	제 7 보조 모터 정지 주파수	Stop Freq 7	Low Freq ~ High Freq	20.00	0	
77	0h1A4D	제 8 보조 모터 정지 주파수	Stop Freq 8	Low Freq ~ High Freq	20.00	0	
80	0h1A50	보조모터 1 의 Reference 보상량	Aux1 Ref Comp	0.00 ~ Unit Band	0.00	0	-
81	0h1A51	보조모터 2 의 Reference 보상량	Aux2 Ref Comp	0.00 ~ Unit Band	0.00	0	-
82	0h1A52	보조모터 3의 Reference 보상 량	Aux3 Ref Comp	0.00 ~ Unit Band	0.00	0	-
83	0h1A53	보조모터 4의 Reference 보상 량	Aux4 Ref Comp	0.00 ~ Unit Band	0.00	0	-

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
84	0h1A54	보조모터 5 의 Reference 보상 량	Aux5 Ref Comp	0.00 ~ Unit Band	0.00	0	
85	0h1A55	보조모터 6 의 Reference 보상 량	Aux6 Ref Comp	0.00 ~ Unit Band	0.00	0	
86	0h1A56	보조모터 7 의 Reference 보상 량	Aux7 Ref Comp	0.00 ~ Unit Band	0.00	0	
87	0h1A57	보조모터 8 의 Reference 보상 량	Aux8 Ref Comp	0.00 ~ Unit Band	0.00	0	-
90	0h1A5A	인터락 선택	Interlock	0 NO 1 YES	0:No	0	-
91	0h1A5B	주제어 모터에 인터락 / 오토체인지 발생시 다음 주제어모터를 운전하기 전 지연 시간	Interlock DT	0.1 ~ 360.0(Sec)	5.0	0	-
				0: Aux 1			
		AP1-96 과		1: Aux 2			
0567		AP1-97 에서		2: Aux 3	0. 1		
95°′	UNTASE	보고자하는 보	Auxkun nime Sel	3: Aux 4	U. AUX I	0	
		조모터 선택		4: Aux 5			
				5: Aux 6			

Г

⁶⁷ AP1-95~98 코드는 MMC 및 Master Follower 동작이 가능한경우 선택 가능 합니다

전체 기능표 알아두기

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
				6: Aux 7			
				7: Aux 8			
96	0h1A60	AP1-95 에서 선택한 보조모 터의 운전 시 간(day)	AuxRunTime Day	0 ~ 65535	0	0	
97	0h1A61	AP1-95 에서 선택한 보조모 터의 운전 시 간(Hour : Minute)	AuxRunTime Min	00:00 ~ 23:59	00:00	0	
				0: None			
				1: ALL			
				2: Aux 1			
				3: Aux 2			
<u></u>	01.4.4.00	보조모터의 운	ADura Tirra a. Cha	4: Aux 3	0. No. 1	0	
98	UN1A62	전 시간 삭제	Auxkun time Cir	5: Aux 4	0: None	0	
				6: Aux 5			
				7: Aux 6			
				8: Aux 7			
				9: Aux 8			

8.11 Application 2 기능 그룹(AP2)

٢

회색 음영 부분은 관련 코드가 선택되어 있는 경우에만 나타남 *O: 운전 중 쓰기 가능, Δ: 운전 정지 시 쓰기 가능, X: 쓰기 금지

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
00	-	점프 코드	Jump Code	1~99	40	0	<u>p.65</u>
01 ⁶⁸	0h1B01	부하 곡선 튜닝	Load Tune	0 No 1 Yes	No	Δ	-
02	0h1B02	부하 곡선 Low Freq	Load Fit Lfreq	Base Freq*15% ~Load Fit HFreq	30.00	Δ	-
03	0h1B03	Low Freq 에서의 전류량	Load Fit LCurr	0.0 ~ 80.0(%)	40.0	Δ	-
04	0h1B04	Low Freq 에서의 파워량	Load Fit LPwr	0.0 ~ 80.0(%)	30.0	Δ	-
08	0h1B08	부하 곡선 High Freq	Load Fit Hfreq	Load Fit LFreq ~ High Freq	51.00	Δ	-
09	0h1B09	High Freq 에서의 전류량	Load Fit HCurr	Load Fit LCurr ~ 200.0(%)	80.0	Δ	-
10	0h1B0A	High Freq 에서의 파워량	Load Fit HPwr	Load Fit LPwr ~ 200.0(%)	80.0	Δ	-
11	0h1B0B	부하곡선 전류량	Load Curve Cur	-	-	х	-
12	0h1B0C	부하곡선 파워량	Load Curve Pwr	-	-	х	-
15	0h1B0F	펌프 클린 설정 1	Pump Clean Mode1	 None DI Defendant Output Power Output Current 	0: None	0	-

68 AP2-01 코드를 사용하기 위해서는 운전 모드를 Auto 모드로 설정해야만 선택 가능함

전체 기능표 알아두기

코드	통신 번지	명칭	LCD 표시	설	정 범위	초기 값	속성*	참조
				0	None			
16	061010	펌프 클린	Pump Clean	1	Start	0.None	^	
10		설정 2	Mode2	2	Stop	U.NONE	Δ	-
				3	Start&Stop			
17	0h1B11	펌프 클린 부하 설정	PC Curve Rate	0.1	~ 200.0(%)	100.0	0	-
18	0h1B12	펌프 클린 레퍼런스 밴드	PC Curve Band	0.0) ~ 100.0(%)	5.0	0	-
19	0h1B13	펌프 클린 동작 지연시간	PC Curve DT	0.0) ~ 6000.0(sec)	60.0	0	-
20	0h1B14	펌프 클린 운전 가능 영역 유지 시간	PC Start DT	0.0) ~ 6000.0(sec)	10.0	0	-
21	0h1B15	정/역 변환시 0 속 운전 시간	PC Step DT	0.1	~ 6000.0(sec)	5.0	0	-
22	0h1B16	펌프 클린 가속 시간	PC Acc Time	0.0) ~ 600.0(sec)	10.0	0	-
23	0h1B17	펌프 클린 감속 시간	PC Dec Time	0.0) ~ 600.0(sec)	10.0	0	-
24	0h1B18	정방향 스텝 유지 시간	Fwd SteadyTime	0.0)~600.0(sec)	10.0	0	-
25	0h1B19	정방향 스텝 유지 주파수	Fwd SteadyFreq	0.0 Hię	00, Low Freq~ gh Freq	30.00	0	-
26	0h1B1A	역방향 스텝 유지 시간	Rev SteadyTime	0.0) ~ 600.0(sec)	10.0	0	-
27	0h1B1B	역방향 스텝 유지 주파수	Rev SteadyFreq	0.0 Hię	00, Low Freq ~ gh Freq	30.00	0	-
28	0h1B1C	펌프 클린 사이의 정/역 방향 스텝 개수	PC Num of Steps	1 -	- 10	2	0	-

코드	통신 번지	명칭	LCD 표시	설정	범위	초기 값	속성*	참조
29	0h1B1D	펌프 클린 기능 주기 모니터링	Repeat Num Mon	-		-	x	-
30	0h1B1E	펌프 클린 반복 횟수	Repeat Num Set	0~	10	2	0	-
31	0h1B1F	펌프 클린 완료 후 동작	PC End Mode	0 1	Stop Run	0.Stop	Δ	-
32	0h1B20	Pump Clean 연속 제한 시간	PC Limit Time	6~0	60(min)	10	0	-
33	0h1B21	Pump Clean 연속 제한 회수	PC Limit Num	0~	10	3	0	-
38	0h1B26	Dec Valve 동작 주파수	Dec Valve Freq	Low	r Freq ~ High Freq	40.00	0	-
39	0h1B27	Dev Valve 감속 시간	Dev Valve Time	0.0	~ 6000.0(sec)	0.0	0	-
40	0h1B28	Start&End Ramp 기능 선택	Start&End Ramp	0 1	No Yes	0 : No	Δ	-
41	0h1B29	Start Ramp 가속시간	Start Ramp Acc	0.0 <i>·</i>	~ 600.0(sec)	10.0	0	-
42	0h1B2A	End Ramp 감속시간	End Ramp Dec	0.0 ·	~ 600.0(sec)	10.0	0	-
45	0h1B2D	댐퍼 체크 시간	Damper Check T	0.0 ·	~ 600.0(sec)	5.0	0	-
46	0h1B2E	루브리케이션 동작 시간	Lub Op Time	0.0 ·	~ 600.0(sec)	5.0	0	-
48 ⁶⁹	0h1B30	초기 가열 레벨	Pre Heat Level	1~	100(%)	20	0	-
49	0h1B31	초기 가열 듀티비	Pre Heat Duty	1~	100(%)	30	0	-

Γ

⁶⁹ AP248~AP2-49 코드는 IN-65~71 코드 중 하나가 Pre-Heat 로 설정된 경우 나타남

코드	통신 번지	명칭	LCD 표시	설정	l 범위	초기 값	속성*	참조
50	0h1B32	DC 입력 지연 시간	DC Inj Delay T	0.0	~ 600.0(sec)	60.0	o	-
87	0h1B57	1st MOTOR 평균 POWER	M1 AVG PWR	0.1	~ 500.0(kW)	-	0	-
88	0h1B58	2nd MOTOR 평균 POWER	M2 AVG PWR	0.1	~ 500.0(kW)	-	0	-
89	0h1B59	kWh 당 비용	Cost per kWh	0.0	~ 1000.0	0.0	0	-
90	0h1B5A	kWh 에너지 절감량	Saved kWh	-		-	х	-
91	0h1B5B	MWh 에너지 절감량	Saved MWh	-		-	х	-
92	0h1B5C	1000 단위 까지의 Cost 절감량	Saved Cost1	-		-	х	-
93	0h1B5D	1000 단위 이상의 cost 절감량	Saved Cost2	-		-	x	-
94	0h1B5E	절감 CO2 변환 Factor	CO2 Factor	0.0	~ 5.0	0.0	0	-
95	0h1B5F	CO2 절감량 (Ton 단위)	Saved CO2 - 1	-		-	х	-
96	0h1B60	CO2 절감량 (kTon 단위)	Saved CO2 - 2	-		-	х	-
97	0h1B61	에너지 절감량 Reset	Reset Energy	0 1	No Yes	0 : No	Δ	-

8.12 Application 3 기능 그룹(AP3)

회색 음영 부분은 관련 코드가 선택되어 있는 경우에만 나타남 *O: 운전 중 쓰기 가능, Δ: 운전 정지 시 쓰기 가능, X: 쓰기 금지

Г

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
00	-	점프 코드	Jump Code	1 ~ 99	70	0	<u>p.65</u>
01	0h1C01	현재 날짜	Now Date	01/01/2000 ~ 12/31/2099 (Date)	01/01/200 0	0	-
02	0h1C02	현재 시간	Now Time	0:00 ~ 23:59(Min)	0:00	0	-
03	0h1C03	현재 요일	Now Weekday	0000000 ~ 1111111(Bit)	0000001	0	-
04	0h1C04	Summer Time 시작 날짜	Summer T Start	01/01 ~ Summer T Stop	04/01	0	-
05	0h1C05	Summer Time 종료 날짜	Summer T Stop	Summer T Start ~ 12/31(Date)	11/30	0	-
				0 YYYY/MM/DD			
06 ⁷⁰	0h1C06	날짜 표시 방법	Date Format	1 MM/DD/YYYY	YYY	0	-
				2 DD/MM/YYYY			
10	0h1C0A	Period 연결 상태	Period Status	0000 0000 0000 - 1111 1111 1111	0000 0000 0000	х	-
11	0h1C0B	Time Period 1 시작 시간 설정	Period1 StartT	0:00 ~ 24:00 (min)	24:00	0	-
12	0h1C0C	Time Period 1 정지 시간 설정	Period1 Stop T	Period1 StartT ~ 24:00(Min)	24:00	0	-
13	0h1C0D	Time Period 1 요 일 설정	Period1 Day	000 0000 ~ 111 1111(Bit)	000 0000		-
14	0h1C0E	Time Period 2 시 작 시간 설정	Period2 StartT	0:00 ~ 24:00 (Min)	24:00	0	-

⁷⁰ AP3-06 의 설정에 따라 날짜 format 이 변경됨

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
15	0h1C0F	Time Period 2 정 지 시간 설정	Period2 Stop T	Period2 StartT ~ 24:00(Min)	24:00	0	-
16	0h1C10	Time Period 2 요 일 설정	Period2 Day	000 0000 ~ 111 1111(Bit)	000 00000	0	-
17	0h1C11	Time Period 3 시 작 시간 설정	Period3 StartT	0:00 ~ 24:00 (Min)	24:00	0	-
18	0h1C12	Time Period 3 정 지 시간 설정	Period3 Stop T	Period3 StartT ~ 24:00(Min)	24:00	0	-
19	0h1C13	Time Period 3 요 일 설정	Period3 Day	000 0000 ~ 111 1111(Bit)	000 0000	0	-
20	0h1C14	Time Period 4 시 작 시간 설정	Period4 StartT	0:00 ~ 24:00 (Min)	24:00	0	-
21	0h1C15	Time Period 4 정 지 시간 설정	Period4 Stop T	Period4 StartT ~ 24:00(Min)	24:00	0	-
22	0h1C16	Time Period 4 요 일 설정	Period4 Day	000 0000 ~ 111 1111(Bit)	000 0000	0	-
30	0h1C1E	Except1 Date 시 작 시간 설정	Except1 StartT	0:00 ~ 24:00 (Min)	24:00	0	-
31	0h1C1F	Except1 Date 정 지 시간 설정	Except1 Stop T	Except1 StartT ~ 24:00(Min)	24:00	0	-
32	0h1C20	Except1 Date 설 정	Except1Date	01/01 ~ 12/31(Date)	01/01	0	-
33	0h1C21	Except2 Date 시 작 시간 설정	Except2 StartT	0:00 ~ 24:00 (Min)	24:00	0	-
34	0h1C22	Except2 Date 정 지 시간 설정	Except2 Stop T	Except2 StartT ~ 24:00(Min)	24:00	0	-
35	0h1C23	Except2 Date 설 정	Except2Date	01/01 ~ 12/31(Date)	01/01	0	-

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
36	0h1C24	Except3 Date 시 작 시간 설정	Except3 StartT	0:00 ~ 24:00 (Min)	24:00	0	-
37	0h1C25	Except3 Date 정 지 시간 설정	Except3 Stop T	Except3 StartT ~ 24:00(Min)	24:00	0	-
38	0h1C26	Except3Date 설 정	Except3Date	01/01 ~ 12/31(Date)	01/01	0	-
39	0h1C27	Except4 Date 시 작 시간 설정	Except4 StartT	0:00 ~ 24:00 (Min)	24:00	0	-
40	0h1C28	Except4 Date 정 지 시간 설정	Except4 Stop T	Except4 StartT ~ 24:00(Min)	24:00	0	-
41	0h1C29	Except4Date 설 정	Except4Date	01/01 ~ 12/31(Date)	01/01	0	-
42	0h1C2A	Except5 Date 시 작 시간 설정	Except5 StartT	0:00 ~ 24:00 (Min)	24:00	0	-
43	0h1C2B	Except5 Date 정 지 시간 설정	Except5 Stop T	Except5 StartT ~ 24:00(Min)	24:00	0	-
44	0h1C2C	Except5 Date 설 정	Except5 Date	01/01 ~ 12/31(Date)	01/01	0	-
45	0h1C2D	Except6 Date 시 작 시간 설정	Except6 StartT	0:00 ~ 24:00 (Min)	24:00	0	-
46	0h1C2E	Except6 Date 정 지 시간 설정	Except6 Stop T	Except6 StartT ~ 24:00(Min)	24:00	0	-
47	0h1C2F	Except6 Date 설 정	Except6 Date	01/01 ~ 12/31(Date)	01/01	0	-
48	0h1C30	Except7 Date 시 작 시간 설정	Except7 StartT	0:00 ~ 24:00 (Min)	24:00	0	-

Г

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
49	0h1C31	Except7 Date 정 지 시간 설정	Except7 Stop T	Except7 StartT ~ 24:00(Min)	24:00	0	-
50	0h1C32	Except7 Date 설정	Except7 Date	01/01 ~ 12/31(Date)	01/01	0	-
51	0h1C33	Except8 Date 시 작 시간 설정	Except8 StartT	0:00 ~ 24:00 (Min)	24:00	0	-
52	0h1C34	Except8 Date 정 지 시간 설정	Except8 Stop T	Except8 StartT ~ 24:00(Min)	24:00	0	-
53	0h1C35	Except8 Date 설 정	Except8 Date	01/01 ~ 12/31(Date)	01/01	0	-
70	0h1C46	Time Event 기능 설정	Time Event En	0 No 1 Yes	0 : NO	Δ	-
71	0h1C47	Time Event 설정 상태	T-Event Status	0000 0000 – 1111 1111	0000 0000	х	-
72	0h1C48	Time Event 1 연 결 설정	T- Event1Period	0000 0000 0000 ~ 1111 1111 1111	0000 0000 0000	Δ	-
73	0h1C49	Time Event 1 기 능 선택	T- Event1Define	 None Fx Rx Speed-L Speed-M Speed-H Xcel-L Xcel-L Xcel-H Xcel Stop Run Enable 2nd Source Exchange Analog Hold I-Term Clear PID Openloop 	0:None	Δ	-

460 | **LS**ELECTRIC

_

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
				17 PID Gain 2 18 PID Ref			
				19 2nd Motor			
				20 Timer In			
				21 dis Aux Ref			
				22 EPID1 Run			
				23 EPID1 ITermClr			
				24 Pre Heat			
				25 EPID2 RUn			
				26 EPID2 ITermClr			
				27 Sleep Wake Chg			
				28 PID Step Ref			
				29 PID Step Ref			
				30 PID Step Ref			
74	0h1C4A	Time Event 2 연 결 설정	T- Event2Period	0000 0000 0000 ~ 1111 1111 1111	0000 0000 0000	Δ	-
75	0h1C4B	Time Event 2 기 능 선택	T- Event2Define	AP3-73 설정범 위와 동일	0:None	Δ	-
76	0h1C4C	Time Event 3 연 결 설정	T- Event2Period	0000 0000 0000 ~ 1111 1111 1111	0000 0000 0000	Δ	-
77	0h1C4D	Time Event 3 기 능 선택	T- Event3Define	AP3-73 설정범 위와 동일	0:None	Δ	-
78	0h1C4E	Time Event 4 연 결 설정	T- Event4Period	0000 0000 0000 ~ 1111 1111 1111	0000 0000 0000	Δ	-
79	0h1C4F	Time Event 4 기 능 선택	T- Event4Define	AP3-73 설정범 위와 동일	0:None	Δ	-

Г

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
80	0h1C50	Time Event 5 연 결 설정	T- Event5Period	0000 0000 0000 ~ 1111 1111 1111	0000 0000 0000	Δ	-
81	0h1C51	Time Event 5 기 능 선택	T- Event5Define	AP3-73 설정범 위와 동일	0:None	Δ	-
82	0h1C52	Time Event 6 연 결 설정	T- Event6Period	0000 0000 0000 ~ 1111 1111 1111	0000 0000 0000	Δ	-
83	0h1C53	Time Event 6 기 능 선택	T- Event6Define	AP3-73 설정범 위와 동일	0:None	Δ	-
84	0h1C54	Time Event 7 연 결 설정	T- Event7Period	0000 0000 0000 ~ 1111 1111 1111	0000 0000 0000	Δ	-
85	0h1C55	Time Event 7 기 능 선택	T- Event7Define	AP3-73 설정범 위와 동일	0:None	Δ	-
86	0h1C56	Time Event 8 연 결 설정	T- Event8Period	0000 0000 0000 ~ 1111 1111 1111	0000 0000 0000	Δ	-
87	0h1C57	Time Event 8 기 능 선택	T- Event8Define	AP3-73 설정범 위와 동일	0:None	Δ	-

8.13 보호 기능 그룹(PRT)

회색 음영 부분은 관련 코드가 선택되어 있는 경우에만 나타남 O: 운전 중 쓰기 가능, Δ: 운전 정지 시 쓰기 가능, X: 쓰기 금지

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
00	-	점프 코드	Jump Code	1~99		40	0	<u>p.65</u>
05		이부러 거니		Bit	00~11			
	0h1D05	입술덕 결상 보호	Phase Loss Chk	Bit0	출력 결상	00	Δ	-
		<u> </u>		Bit1	입력 결상		Δ -	

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
06	0h1D06	입력 결상 전압 밴드	IPO V Band	1 ~ 1(DO(V)	15	0	-
07	0h1D07	트립 시 감속 시간	Trip Dec Time	0.0 ~ 600.0(sec)		3.0 5.5~ 90kW 90.0 110~ 500kW	0	-
08	0h1D08	트립 리셋 시 기동 선택	RST Restart	Bit (Bit0 Bit1 [D0~11 _V 를 제외한 Trip _V Trip	00	0	-
09	0h1D09	자동 재기동 횟수	Retry Number	0 ~ 10		0	0	-
10	0h1D0A	자동 재기동 지연 시간	Retry Delay	0.1 ~	600.0(sec)	5.0	0	-
11	0h1D0B	키패드 지령 상실시 동작	Lost KPD Mode	0 1 2 3	None Warning Free-Run Dec	0:None	0	-
12	0h1D0C	속도 지령 상실 시 동작	Lost Cmd Mode	0 1 2 3 4 5	None Free-Run Dec Hold Input Hold Output Lost Preset	0:None	0	-
13 ⁷¹	0h1D0D	속도 지령 상실 판정 시간	Lost Cmd Time	0.1 ~	120.0(sec)	1.0	0	-
14	0h1D0E	속도 지령 상실 시 운전 주파수	Lost Preset F	0.00, High l	Low Freq~ Freq	0.00	0	-
15	0h1D0F	아날로그 입력 상실 판정 레벨	Al Lost Level	0	Half of x1 Below x1	0:Half of x1	0	-
				U	NO			

Γ

⁷¹ PRT-13~PRT15 코드는 PRT-12 코드가 0: NONE 이 아닌 경우 나타남

코드	통신 번지	명칭	LCD 표시	설정 벋	ậ위	초기 값	속성*	참조
17	0h1D11	과부하 경보 선택	OL Warn Select	1	Yes	0:No	0	-
18	0h1D12	과부하 경보 레벨	OL Warn Level	30 ~ C (%)	0L Trip Level	110	0	-
19	0h1D13	과부하 경보 시간	OL Warn Time	0.0 ~ 30.0(sec)		10.0	0	-
20	0h1D14	과부하 트립 시 동작	OL Trip Select	0 None 1 Free-Run 1 2 Dec		1:Free-Run	0	-
21	0h1D15	과부하 트립 레벨	OL Trip Level	30 ~ 1	50(%)	120	0	-
22	0h1D16	과부하 트립 시간	OL Trip Time	0.0 ~ 6	60.0(sec)	60.0	0	-
23	0h1D17	경부하 경보 소스 선택	UL Source	0 Output Current		0:Output Current	Δ	-
24	0h1D18	경부하 경보 검출 밴드	UL Band	0.0 ~ 1	00.0(%)	10.0	Δ	-
25	0h1D19	경부하 경보 선택	UL Warn Sel	0 1	No Yes	0:No	0	-
26	0h1D1A	경부하 경보 시간	UL Warn Time	0.0 ~ 6	600.0(sec)	10.0	0	-
27	0h1D1B	경부하 트립 선택	Op Sel for UL	0 1 2 3	None Free-Run Dec Sleep	0:None	0	-
28	0h1D1C	경부하 트립 시간	UL Op Time	0.0 ~ 6	600.0(sec)	30.0	0	-
31	0h1D1F	모터 없음 트립 시 동작	No Motor Trip	0 1	None Free-Run	0:None	0	-

코드	통신 번지	명칭	LCD 표시	설정 벋	위	초기 값	속성*	참조
32	0h1D20	모터 없음 트립 전류 레벨	No Motor Level	1 ~ 10	D(%)	5	0	-
33	0h1D21	모터 없음 감지 시간	No Motor Time	0.1 ~ 1	0.0(sec)	3.0	0	-
	0h1D22	모터 과열 검출	Thermal-T Sel	0	None	0:None	0	
34		센서 검출 후		1	Free-Run			-
		동작 선택		2	Dec			
	0h1D23	모터 과열 검출	Thermal In Src	0	Thermal In			
35		센서 입력 선택		1	V2	0:Thermal In	0	-
	0h1D24	모터 과열 검출	Thermal-T Lev	0.0 ~ 1	00.0(%)	50.0	0	
36		센서 고장 레벨						-
37	0h1D25	모터 과열 검출	Thermal-T	0	Low	0:Low	0	
		센서 고장 영역	Area	1	High			-
00 72	0h1D26	모터 과열 검출	ThermalMonito	-		-	х	
38'2		센서	r					-
		모터 과역 트린		0	None			
40	0h1D28	ㅗㅋ ᅬᆯ ㅡㅂ 선택	ETH Trip Sel	1	Free-Run	0:None	0	-
				2	Dec			
41	0h1D29	모터 냉각 팬	Motor Coolina	0	Self-cool	0:Self-cool	0	_
		종류		1	Forcea-		_	
42	0h1D2A	모터 과열 방지	FTH 1min	ETH C	ont~	120	0	_
	011122/1	1 분 정격		150(%)			
43	0h1D2B	모터 과열 방지 연속 정격	ETH Cont	50 ~ 1:	20(%)	100	0	-

Γ

⁷² PRT-38 코드는 PRT-34 코드가 0: NONE 이 아닌 경우 나타남

코드	통신 번지	명칭	LCD 표시	설정 벋	위	초기 값	속성*	참조
44	0h1D2C	Fire Mode 설정 비밀번호	Fire Mode PW	0 ~ 999	99	3473	0	-
45 ⁷³	0h1D2D	Fire Mode 설정	Fire Mode Sel	0 1 2	None Fire Mode Test Mode	0: None	ο	-
46 ⁷⁴	0h1D2E	Fire Mode 방향 설정	Fire Mode Dir	0 Reverse 1 Forward		1:Forward	ο	-
47 ⁷⁵	0h1D2F	Fire Mode 속도 설정	Fire Mode Freq	0.00 ~	max Freq	60.00	0	-
48	0h1D30	Fire Mode 동작 횟수	Fire Mode Cnt	-		0	х	-
50	0h1D32	스톨 방지 동작 및 플럭스 브레이킹	Stall Prevent	bit Bit 0 Bit 1 Bit 2 Bit 3	0000~11 가속 중 정속 중 감속 중 Fux Braking	0100	Δ	-
51	0h1D33	스톨 주파수 1	Stall Freq 1	시작 ² 스톨주	두파수~ 파수 2(Hz)	60.00	0	-
52	0h1D34	스톨 레벨 1	Stall Level 1	30~150(%)		130	Δ	-
53	0h1D35	스톨 주파수 2	Stall Freq 2	스톨주파수 1~ 스톨주파수 3(Hz)		60.00	0	-
54	0h1D36	스톨 레벨 2	Stall Level 2	30~150	D(%)	130	Δ	-

⁷³ PRT-45 코드 설정을 위해서는 PRT-44 의 Fire Mode 를 설정해야 선택 가능함. 또한, 다시 다른 모드를 선택하기 위해서는 다시 PRT-44 번 코드에 비밀번호를 설정 후 변경 가능함
 ⁷⁴ PRT-46~PRT47 코드는 PRT-45 코드가 0: NONE 이 아닌 경우 나타남

⁷⁵ PRT-45 에서 Fire Mode 로 설정시 prt-46 번은 Forward 로 고정되며, PRT-47 번의 주파수도 변경되지 않음. PRT-45 에서 Test Mode 로 설정시 PRT-46 과 47 번이 변경 가능함

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
55	0h1D37	스톨 주파수 3	Stall Freq 3	스톨주피 스톨주피	파수 2~ 파수 4(Hz)	60.00	0	-
56	0h1D38	스톨 레벨 3	Stall Level 3	30~150	(%)	130	Δ	-
57	0h1D39	스톨 주파수 4	Stall Freq 4	스톨주파수 3~ 최대 주파수(Hz)		60.00	0	-
58	0h1D3A	스톨 레벨 4	Stall Level 4	30 ~ 150	0(%)	130	Δ	-
59	0h1D3B	Flux Braking 전압 게인	Flux Brake Kp	5.5~ 90kW 110~ 500kW	0 ~150(%) 0 ~10(%)	0	0	
60	0h1D3C	파이프 파손 검출 설정	PipeBroken Sel	0 1 2 3	None Warning Free-Run Dec	0:None	0	-
61	0h1D3D	파이프 파손 검출 레벨	PipeBroken Lev	0.0 ~ 100.0(%)		97.5	0	-
62	0h1D3E	파이프 파손 검출 시간 설정	PipeBroken DT	0.0 ~ 60	000.0(Sec)	10.0	0	-
66	0h1D42	제동 저항 사용률	DB Warn %ED	0 ~ 30(%	%)	0	0	-
70	0h1D46	레벨 검출 모드 동작 선택	LDT Sel	0 N 1 V 2 F 3 C	lone Varning Free-Run Dec	0 : None	0	-
71	0h1D47	레벨 검출 모드를 설정.	LDT Area Sel	0 Below 0 Level 1 Above		0:Below Level	0	-
72				0 C	Dutput Current	0:Output		
	0h1D48	레벨 검출 소스 I	LDT Source	DC Link 1 Voltage Voltage		Currrent	0	-

Г

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 값	속성*	참조
				2	Output Voltage			
				3	kW			
				4	HP			
				5	V1			
				6	V2			
				7	12			
				8	PID Ref Value			
				9	PID Fdb Value			
				10	PID Output			
				11	EPID1 Fdb Val			
				12	EPID2 Fdb Val			
				13	V3			
				14	13			
73	0h1D49	레벨 검출 지연 시간	LDT Dly Time	0 ~ 99	99(sec)	2	0	-
74	0h1D4A	레벨 검출 기준 설정 값	LDT Level	소스별	1 설정	소스별 설정	0	-
75	0h1D4B	레벨 검출 밴드폭	LDT Band width	소스별	1 설정	소스별 설정	0	-
76	0h1D4C	레벨 검출 주파수	LDT Freq	0.00 ~ Freq(⊦	High Iz)	20.00	0	-
77	0h1D4D	레벨 검출 트립 재 시작 시간	LDT Restart DT	0.0 ~ 3000.0(Min)		60.0	0	-
79	0h1D4F	냉각 팬 고장 선택	Fan Trip Mode	0 1	Trip Warning	1 : Warning	0	-
80	0h1D50		Opt Trip Mode	0	None	1.Free-Run	0	-
00				1	Free-Run			

코드	통신 번지	명칭	LCD 표시	설정 벋	넑위	초기 값	속성*	참조
		옵션 트립 시		2	Dec			
81	0h1D51	저전압 판정 지연 시간	LVT Delay	0.0 ~ 6	60.0(sec)	0.0	Δ	-
82	0h1D52	운전 중 저전압 판정 선택	LV2 Trip Sel	0 1	No Yes	0:No	Δ	-
83	0h1D53	CAP 수명진단 전류 레벨	CAP.Diag Perc	10 ~ 1	00(%)	0	0	-
				0	None			
84 ⁷⁶	-	CAP.수명 진단	CAPDiad	1	Cap.Diag 1	0.None	Λ	_
0-		모드	o	2	Cap.Diag 2			
				3	Cap.Init			
85	0h1D55	CAP.수명 진단 레벨 1	CAP.Level1	50.0 ~	95.0(%)	0.0	Δ	-
86 ⁷⁷	0h1D56	CAP.수명 진단 레벨 2	CAP.Level2	-		-	х	-
87	0h1D57	팬 사용 누적 %	Fan Time Perc	-		-	Х	-
88	0h1D58	팬교체 경고 레벨	Fan Exchange	0.0 ~ 1	00.0(%)	0.0	0	-
		배터리 저전압		0	None			
90	0h1D5A	설정	Low Battery	1	Warning	0:None	0	-
91	0h1D5B	브로큰 벨트	BrokenBelt Sel	0	None	0:None	Δ	
		동작 설정		1	Warning			
02	0 h1D5C		BrokenBelt	2	⊦ree-Run			<u> </u>
JL		므로큰 멜트 동작 주파수	Freq	15.00~	MaxFreq	15.00	Δ	

Γ

⁷⁶ PRT-84 는 PRT-83 의 값을 0%이상의 값을 설정해야 나타나고, Auto-State 인 경우만 설정 가능
 ⁷⁷ PRT-86 은 읽기전용

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성*	참조
93 ⁷⁸	0 h1D5D	모터 토크 전류	Current Trq	-	-	x	
94 ⁷⁹	0 h1D5E	브로큰 벨트 동작 토크 전류	BrokenBelt Trq	0.0~100.0%	10.0	Δ	
95	0 h1D5F	브로큰 벨트 동작 지연 시간	BrokenBelt Dly	0~600.0[sec]	10.0	Δ	
96	0h1D60	LDT 자동 재기동 횟수	LDT Rst Cnt	0~6000	1	Δ	
97	0h1D61	LDT 자동 재기동 횟수 카운트	LDT Rst Cnt M	-	-	x	
98	0h1D62	LDT 자동 재기동 횟수 카운트 초기화 시간	LDT Cnt Clr T	-	-	Δ	

8.14 제 2 모터 기능 그룹(M2)

제 2 모터 기능 그룹은 IN-65~71 코드 중 하나라도 28(2nd MOTOR)으로 설정된 경우 나타납니다.

회색 음영 부분은 관련 코드가 선택되어 있는 경우에만 나타남

* O : 운전 중 쓰기 가능, Δ : 운전 정지 시 쓰기 가능, X: 쓰기 금지

코드	통신 번지	명칭	LCD 표시	설정 범위	초기 값	속성 *	참조
00	-	점프 코드	Jump Code	1 ~ 99	14	0	<u>p.65</u>

78 전동기 정격토크대비 현재 출력 토크 값

79 전동기 정격토크대비 브로큰 벨트 동작 토크(%)

코드	통신 번지	명칭	LCD 표시	설7	성 범위	초기 값		속성 *	참조
						20.0	5.5~ 90kW		
04	0h1E04	가속 시간	M2-Acc Time	0.0 600	~).0(sec)	60.0	110~ 250kW	0	-
						100.0	315~ 500kW		
						30.0	5.5~ 90kW		
05	0h1E05	감속 시간	M2-Dec Time	0.0 ~ 600.0(sec)		90.0	110~ 250kW	0	-
						150.0	315~ 500kW		
				7 3.7 kW (5.0HP)					
				8	4.0 kW (5.5HP)				
				9	5.5 kW (7.5HP)				
				10	7.5 kW (10.0HP)				
				11	11.0 kW (15.0HP)				
				12	15.0 kW				
				13	18.5 kW				
06	0h1E06	모터 용량	M2-Capacity	14	22.0 kW	-		Δ	-
				15	(30.0HP) 30.0 kW	-			
				16	(40.0HP) 37.0 kW				
					(50.0HP)	-			
				17	45.0 KW (60.0HP)				
				10	55.0 kW				
					(75.0HP)	-			
				19	75.0kW				
			90.0	90.0kW	-				
				20	(125.0HP)				

Γ

코드	통신 번지	명칭	LCD 표시	설경	성 범위	초기 값	속성 *	참조
				21	110.0kW (150.0HP)			
				22	132.0kW (200.0HP)			
				23	160.0kW (250.0HP)			
				24	185.0kW (300.0HP)			
				25	220.0kW (350.0HP)			
				26	250.0kW (400.0HP)			
				27	315.0kW (500.0HP)			
				28	355.0kW (550.0HP)			
				29	400.0kW (650.0HP)			
				30	500.0kW (800.0HP)			
07	0h1E07	기저 주파수	M2-Base Freq	30.	00 ~ 400.00(H z)	60.00	Δ	-
				0	V/F			
08	0h1E08	제어 모드	M2-Ctrl Mode	2	Slip Compe n	0:V/F	Δ	-
10	0h1E0A	모터 극수	M2-Pole Num	2 ~	48		Δ	-
11	0h1E0B	정격 슬립 속도	M2-Rated Slip	0 ~ 3000(Rpm)		ㅁ티에 따라	Δ	-
12	0h1E0C	모터 정격 전류	M2-Rated Curr	1.0 ~ 1000.0(A)		ㅗ니에 떠다 다름	Δ	-
13	0h1E0D	모터 무부하 전류	M2-Noload Curr	0.0 100	~ 00.0(A)		Δ	-

코드	통신 번지	명칭	LCD 표시	설정 범위		초기 김	초기 값		참조
14	0h1E0E	모터 정격 전압	M2-Rated Volt	0 ⁸⁰ , 17 480(V)	70 ~)			Δ	-
15	0h1E0F	모터 효율	M2-Efficiency	70 ~ 1	00(%)			Δ	-
17	-	고정자 저항	M2-Rs	0.000 ~ 9.999(Ω)]		Δ	-
18	0h1E12	누설 인덕턴스	M2-Lsigma	0.00 ~ 99.99(mH)				Δ	-
				0	Linear			Δ	
25	01 4 5 4 0	V/F 패턴	M2-V/F Patt	1 Square 2 User V/F		0: Line	ear		-
	0h1E19								
26	0b1E1A	정방향 토크	M2-Ewd Boost	0.0 ~ 15.0(%)		2.0	5.5~ 90kW	_	
20	UNLIA	부스트				1.0	110~ 500kW	Δ	-
27		역방향 토크	M2 Poy Roost	0.0 1	5 0(%)	2.0	5.5~ 90kW		
21	UNITEID	부스트	102-ILEV D0031	0.0~	13.0(78)	1.0	110~ 500kW	Δ	-
28	0h1E1C	스톨 방지 레벨	M2-Stall Lev	30 ~ 1	50(%)	130		Δ	-
		모터 과열							
29	0h1E1D	방지 1 분	M2-ETH 1min	100 ~	150(%)	120		Δ	-
_		정격							
		모터 과열							
30	0h1E1E	방지 연속	M2-ETH Cont	50 ~ 1	20(%)	100		Δ	-
		정격							

8.15 트립 및 컨피그 모드

80 [4.15 모터 출력 전압 조정] 참조

Γ

8.15.1 트립 모드(TRP Last-x)

코드	명칭	LCD 표시	설정 범위	초기 값	참조
00	고장 종류 표시	Trip Name(x)	-	-	-
01	고장 시 운전 주파수	Output Freq	-	-	-
02	고장 시 출력 전류	Output Current	-	-	-
03	고장 시 가감속	Inverter State	-	-	-
04	직류부 전압	DCLink Voltage	-	-	-
05	NTC 온도	Temperature	-	-	-
06	입력 단자대 상태	DI State	-	0000 0000	-
07	출력 단자대 상태	DO State	-	00 0000	-
08	전원 투입 후 고장 시간	Trip On Time	-	00/00/00 00:00	-
09	운전 시작 후 고장 시간	Trip Run Time	-	00/00/00 00:00	-
10	고장 이력 삭제	Trip Delete?	0	No	_
코드	명치		1 석정 번위	Yes 초기 값	찬조
00	고장 종류 표시	Trip Name(x)	-	-	-
01	고장 시 운전 주파수	Output Freq	-	-	-
02	고장 시 출력 전류	Output Current	-	-	-
03	고장 시 가감속	Inverter State	-	-	-
04	직류부 전압	DCLink Voltage	-	-	-
05	NTC 온도	Temperature	-	-	-
06	입력 단자대 상태	DI State	-	0000 0000	-
07	출력 단자대 상태	DO State	-	000	-

코드	명칭	LCD 표시	설정	성 범 위	초기 값	참조
08	전원 투입 후 고장 시간	Trip On Time	-		00/00/00 00:00	-
09	운전 시작 후 고장 시간	Trip Run Time	-		00/00/00 00:00	-
10	고장 이력 삭제	Trip Delete?	0 1	No Yes		

8.15.2 **컨피그 모드(CNF)**

Γ

코드	명칭	LCD 표시	설정	범위	초기 값	참조
00	점프 코드	Jump Code	1~99		42	<u>p.65</u>
01	키패드 언어 선택	Language Sel	0 : English		0 : English	
02	LCD 명암 조절	LCD Contrast	-		-	-
10	인버터 S/W 버전	Inv S/W Ver	-		-	-
11	LCD 로더 S/W 버전	KeypadS/W Ver	-		-	-
12	LCD 로더 타이틀	KPD Title Ver	-		-	-
20	상태 표시창 표시	Anytime Para	0 Frequency		0: Frequency	-
21	모니터 모드 표시	Monitor Line-1	1	Speed	0: Frequency	-
22	모니터 모드 표시 항목 2	Monitor Line-2	2	Output Current	2:Output Current	-
			3	Output Voltage		
~~	모니터 모드 표시		4	Output Power	3:Output	
23	항목 3	Monitor Line-3	5 WHour Counter		Voltage	-
			6 DCLink Voltage			
			7	DI Status		

코드	명칭	LCD 표시	설정	. 범위	초기 값	참조
			8	DO Status		
			9	V1 Monitor(V)		
			10	V1 Monitor(%)		
			13	V2 Monitor(V)		
			14	V2 Monitor(%)		
			15	I2 Monitor(mA)		
			16	I2 Monitor(%)		
			17	PID Output		
			18	PID Ref Value		
			19	PID Fdb Value		
			20	EPID1 Output		
			21	EPID1 Ref Val		
			22	EPID1 Fdb Val		
			23	EPID2 Output		
			24	EPID2 Ref Val		
			25	EPID2 Fdb Val		
			26	Now Date		
			27	Now Time		
			28	Now Weekday		
24	모니터 모드 초기화	Mon Mode Init	0	No	0.No	-
			1	Yes	0.110	
30 ⁸¹	옵션 슬롯 1 종류	Option-1 Type	-		-	-
31	옵션 슬롯 2 종류	Option-2 Type	-		-	-
32	옵션 슬롯 3 종류	Option-3 Type	-	1	-	-
			0	No		
			1	All Grp		
			2	DRV Grp		
40	피리미디 大기치	Paramotor Init	3	BAS Grp	0·No	
40	피다미너 조기와		4	ADV Grp	0.110	-
			5	CON Grp		
			6	IN Grp		
			7	OUT Grp		

81 자세한 사항은 옵션 매뉴얼 참조

코드	명칭	LCD 표시	설정	범위	초기 값	참조
			8	COM Grp		
			9	PID Grp		
			10	EPI Grp		
			11	AP1 Grp		
			12	AP2 Grp		
			13	AP3 Grp		
			14	PRT Grp		
			15	M2 Grp		
	변경된 파라미터		0	View All		
41	표시	Changed Para	1	View Changed	0:View All	-
			0	None		
42	다기능 키 항목	Multi Key Sel	1	UserGrp SelKey	0:None	-
			2	Now Time		
			0	Basic		
			1	Compressor		
			2	Supply Fan		
∕ 13	매ㅋㄹ 기느 하모	Macro Select	3	Exhaust Fan	0.Basic	_
40	베그포 기이 이기		4	Cooling Tower	U.Dasic	
			5	Circul. Pump		
			6	Vacuum Pump		
			7	Constant Torque		
			0	No		
44	트립 이력 삭제	Erase All Trip	1	Yes	0:No	-
	사용자 등록 코드		0	No		
45	삭제	UserGrp AllDel	1	Yes	0:No	-
40	피기미디 이기	Development and Development	0	No	0.1	
46	파라미터 읽기	Parameter Read	1	Yes	U:NO	-
47		Parameter	0	No		
47	파라미터 쓰기	Write	1	Yes	U: NO	-
40	피기미디 지자	Demonster Cause	0	No	0.01-	
48	파다미더 지성	Parameter Save	1	Yes	0.100	-
50	파라미터 모드 숨김	View Lock Set	0~9	999	Un-locked	-
51	파라미터 모드 숨김 암호	View Lock Pw	0~9	999	Password	-

Γ

코드	명칭	LCD 표시	설정	범위	초기 값	참조
52	파라미터 변경 잠금	Key Lock Set	0~9	999	Un-locked	-
53	파라미터 변경 잠금 암호	Key Lock Pw	0~9999		Password	-
	추가 타이틀		0	No		
60	업데이트	Add Title Up	1	Yes	0:No	-
61	파라미터 가펴 서저	Easy Start On	0	No	1.Voc	_
01	피나비나 신간 같ㅎ	Lasy Start Off	1	Yes	1.105	-
60	사요 저려랴 大기히		0	No	0.10	
62	자용 선택량 소기와	WHCOUNT Reset	1 Yes		0.100	-
70	인버터 동작 누적 시간	On-time	00000DAY 00:00		-	Day hh:mm
71	인버터 운전 누적 시간	Run-time	000	00DAY 00:00	-	Day hh:mm
	인버터 운전 누적		0	No		
72	시간 초기화	Time Reset	1	Yes	0:No	-
73 ⁸²	Real Time	Real Time	Date	e Format		
74	냉각 팬 운전 누적 시간	Fan Time	00000DAY 00:00		-	Day hh:mm
	냉각 팬 운전 시간		0	No		
75	초기화	Fan Time Rst	1	Yes	0:No	-

8.16 Macro 그룹

각 매크로 설정 파라미터는 하기 표에서 해당 매크로의 파라미터 표를 확인 하십시오.

⁸² AP3-06 의 설정에 따라 날짜 format 이 변경됨

8.16.1 Compressor(MC1) 그룹

Г

매크로 코드	코드	LCD 표시	초기 값	매크로 코드	코드	LCD 표시	초기 값
0	-	Jump Code	1:CODE	1	DRV 3	Acc Time	0.75~90kW 10.0 110~250kW 30.0 315~500kW 50.0
2	DRV 4	Dec Time	0.75~90kW 20.0 110~250kW 60.0 315~500kW 100.0	3	DRV 7	Freq Ref Src	1: Keypad-2
4	DRV 9	Control Mode	1: Slip Compen	5	DRV 11	JOG Frequency	20.00
6	DRV 12	JOG Acc Time	13.0	7	DRV 13	JOG Dec Time	20.0
8	DRV 15	Torque Boost	1: Auto1	9	BAS 70	Acc Time-1	10.0
10	BAS 71	Dec Time-1	20.0	11	ADV 10	Power-on Run	1: Yes
12	ADV 65	U/D Save Mode	1: Yes	13	CON 4	Carrier Freq	3.0
14	CON 70	SS Mode	0: Flying Start-1	15	CON 77	KEB Select	1: Yes
16	OUT 32	Relay 2	14: Run	17	PID 1	PID Sel	1: Yes
18	PID 3	PID Output	-	19	PID 4	PID Ref Value	-
20	PID 5	PID Fdb Value	-	21	PID 10	PID Ref 1 Src	4: I2
22	PID 11	PID Ref 1 Set	0.5000	23	PID 25	PID P-Gain 1	70.00
24	PID 26	PID I-Time 1	5.0	25	PID 50	PID Unit Sel	5: inWC
26	PID 51	PID Unit Scale	4: x0.01	27	AP1 8	PID Sleep1Freq	5.00
28	AP1 21	Pre-PID Freq	30.00	29	AP1 22	Pre-PID Delay	120.0
30	PRT 8	RST Restart	11	31	PRT 9	Retry Number	3
32	PRT 10	Retry Delay	4.0	33	PRT 11	Lost KPD Mode	3: Dec
34	PRT 12	Lost Cmd Mode	2: Dec	35	PRT 13	Lost Cmd Time	4.0
36	PRT 40	ETH Trip Sel	1: Free Run	37	PRT 42	ETH 1min	120
38	PRT 52	Stall Level 1	130	39	PRT 66	DB Warn %ED	10

40	PRT 70	LDT Sel	1: Warning	41	PRT 72	LDT Source	0:Output Current
42	PRT 75	LDT Band Width	LDT Source 최대치의 10%	43	PRT 76	LDT Freq	20.00
44	M2 4	M2-Acc Time	10.0	45	M2 5	M2-Dec Time	20.0
46	M2 8	M2-Ctrl Mode	1: Slip Compen	47	M2 28	M2-Stall Lev	125
48	M2 29	M2-ETH 1min	120				

8.16.2 Supply Fan(MC2)그룹

Γ

매크로 코드	코드	LCD 표시	초기 값	매크로 코드	코드	LCD 표시	초기 값
0	-	Jump Code	1 CODE	1	DRV 3	Acc Time	0.75~90kW 20.0 110~250kW 60.0 315~500kW 100.0
2	DRV 4	Dec Time	0.75~90kW 30.0 110~250kW 90.0 315~500kW 150.0	3	DRV 7	Freq Ref Src	1: Keypad-2
4	DRV 11	JOG Frequency	15.00	5	BAS 7	V/F Pattern	1: Square
6	BAS 70	Acc Time-1	20.0	7	BAS 71	Dec Time-1	30.0
8	ADV 10	Power-on Run	1: Yes	9	ADV 50	E-Save Mode	2: Auto
10	ADV 64	FAN Control	2: Temp Control	11	ADV 65	U/D Save Mode	1: Yes
12	CON 4	Carrier Freq	3.0	13	CON 70	SS Mode	0: Flying Start-1
14	CON 77	KEB Select	1: Yes	15	OUT 32	Relay 2	10: Over Voltage
16	PID 1	PID Sel	1: Yes	17	PID 3	PID Output	-
18	PID 4	PID Ref Value	-	19	PID 5	PID Fdb Value	-
20	PID 10	PID Ref 1 Src	4: 12	21	PID 11	PID Ref 1 Set	0.5000
22	PID 25	PID P-Gain 1	40.00	23	PID 26	PID I-Time 1	20.0
24	PID 36	PID Out Inv	1: Yes	25	PID 50	PID Unit Sel	5: inWC
26	PID 51	PID Unit Scale	4: x0.01	27	AP1 21	Pre-PID Freq	30.00
28	AP1 22	Pre-PID Delay	120.0	29	PRT 8	RST Restart	11
30	PRT 9	Retry Number	0	31	PRT 10	Retry Delay	20.0
32	PRT 11	Lost KPD Mode	3: Dec	33	PRT 12	Lost Cmd Mode	3: Hold Input
34	PRT 40	ETH Trip Sel	1: Free Run	35	PRT 42	ETH 1min	120
36	PRT 52	Stall Level 1	130	37	PRT 70	LDT Sel	1: Warning
38	PRT 72	LDT Source	0:Output Current	39	PRT 75	LDT Band Width	LDT Source 최대치의 10%

40	PRT 76	LDT Freq	10.00	41	PRT 77	LDT Restart DT	500.0
42	M2 25	M2-V/F Patt	1: Square	43	M2 28	M2-Stall Lev	110
44	M2 29	M2-ETH 1min	110				

8.16.3 Exhaust Fan(MC3) 그룹

Г

매크로 코드	코드	LCD 표시	초기 값	매크로 코드	코드	LCD 표시	초기 값
0	-	Jump Code	1 CODE	1	DRV 3	Acc Time	0.75~90kW 20.0 110~250kW 60.0 315~500kW 100.0
2	DRV 4	Dec Time	0.75~90kW 30.0 110~250kW 90.0 315~500kW 150.0	3	DRV 7	Freq Ref Src	1: Keypad-2
4	DRV 11	JOG Frequency	15.00	5	BAS 7	V/F Pattern	1: Square
6	BAS 70	Acc Time-1	20.0	7	BAS 71	Dec Time-1	30.0
8	BAS 72	Acc Time-2	22.5	9	BAS 73	Dec Time-2	32.5
10	BAS 74	Acc Time-3	25.0	11	BAS 75	Dec Time-3	35.0
12	BAS 76	Acc Time-4	27.5	13	BAS 77	Dec Time-4	37.5
14	BAS 78	Acc Time-5	30.0	15	BAS 80	Acc Time-6	32.5
16	BAS 81	Dec Time-6	42.5	17	BAS 82	Acc Time-7	35.0
18	BAS 83	Dec Time-7	45.0	19	ADV 10	Power-on Run	1: Yes
20	ADV 50	E-Save Mode	2: Auto	21	ADV 64	FAN Control	2: Temp Control
22	ADV 65	U/D Save Mode	1: Yes	23	CON 4	Carrier Freq	3.0
24	CON 70	SS Mode	1: Flying Start-2	25	CON 77	KEB Select	1: Yes
26	OUT 32	Relay 2	10: Over Voltage	27	PID 1	PID Sel	1: Yes
28	PID 3	PID Output	-	29	PID 4	PID Ref Value	-
30	PID 5	PID Fdb Value	-	31	PID 10	PID Ref 1 Src	4: 12
32	PID 11	PID Ref 1 Set	0.5000	33	PID 25	PID P-Gain 1	35.00
34	PID 26	PID I-Time 1	15.0	35	PID 36	PID Out Inv	1: Yes
36	PID 50	PID Unit Sel	5: inWC	37	PID 51	PID Unit Scale	4: x0.01
38	AP1 21	Pre-PID Freq	30.00	39	PRT 8	RST Restart	11

40	PRT 9	Retry Number	0	41	PRT 10	Retry Delay	10.0
42	PRT 11	Lost KPD Mode	3: Dec	43	PRT 12	Lost Cmd Mode	3: Hold Input
44	PRT 40	ETH Trip Sel	1:Free-Run	45	PRT 42	ETH 1min	120
46	PRT 52	Stall Level 1	130	47	PRT 70	LDT Sel	1: Warning
48	PRT 72	LDT Source	0:Output Current	49	PRT 75	LDT Band Width	LDT Source 최대치의 10%
50	PRT 76	LDT Freq	10.00	51	PRT 77	LDT Restart DT	300.0
52	M2 4	M2-Acc Time	10.0	53	M2 5	M2-Dec Time	20.0
54	M2 25	M2-V/F Patt	1: Square	55	M2 28	M2-Stall Lev	110
56	M2 29	M2-ETH 1min	110				

8.16.4 Cooling Tower(MC4)그룹

Г
매크로 코드	코드	LCD 표시	초기 값	매크로 코드	코드	LCD 표시	초기 값
0	-	Jump Code	1: CODE	1	DRV 3	Acc Time	0.75~90kW 20.0 110~250kW 60.0 315~500kW 100.0
2	DRV 4	Dec Time	0.75~90kW 30.0 110~250kW 90.0 315~500kW 150.0	3	DRV 7	Freq Ref Src	1: Keypad-2
4	DRV 11	JOG Frequency	15.00	5	BAS 7	V/F Pattern	1: Square
6	BAS 70	Acc Time-1	20.0	7	BAS 71	Dec Time-1	30.0
8	BAS 72	Acc Time-2	22.5	9	BAS 73	Dec Time-2	32.5
10	BAS 74	Acc Time-3	25.0	11	BAS 75	Dec Time-3	35.0
12	BAS 76	Acc Time-4	27.5	13	BAS 77	Dec Time-4	37.5
14	BAS 78	Acc Time-5	30.0	15	BAS 80	Acc Time-6	32.5
16	BAS 81	Dec Time-6	42.5	17	BAS 82	Acc Time-7	35.0
18	BAS 83	Dec Time-7	45.0	19	ADV 10	Power-on Run	1: Yes
20	ADV 50	E-Save Mode	2: Auto	21	ADV 64	FAN Control	2: Temp Control
22	ADV 65	U/D Save Mode	1: Yes	23	CON 4	Carrier Freq	3.0
24	CON 70	SS Mode	1: Flying Start-2	25	CON 77	KEB Select	1: Yes
26	OUT 32	Relay 2	10: Over Voltage	27	PID 1	PID Sel	1: Yes
28	PID 3	PID Output	-	29	PID 4	PID Ref Value	-
30	PID 5	PID Fdb Value	-	31	PID 10	PID Ref 1 Src	4: 12
32	PID 11	PID Ref 1 Set	50.00	33	PID 25	PID P-Gain 1	40.00
34	PID 26	PID I-Time 1	15.0	35	PID 36	PID Out Inv	1: Yes
36	PID 50	PID Unit Sel	3: °F	37	PID 51	PID Unit Scale	2: x1
38	AP1 21	Pre-PID Freq	30.00	39	AP1 22	Pre-PID Delay	120.0

40	PRT 8	RST Restart	11	41	PRT 9	Retry Number	0
42	PRT 10	Retry Delay	10.0	43	PRT 11	Lost KPD Mode	3: Dec
44	PRT 12	Lost Cmd Mode	3: Hold Input	45	PRT 40	ETH Trip Sel	1: Free Run
46	PRT 42	ETH 1min	120	47	PRT 52	Stall Level 1	130
48	PRT 70	LDT Sel	1: Warning	49	PRT 72	LDT Source	0:Output Current
50	PRT 75	LDT Band Width	LDT Source 최대치의 10%	51	PRT 76	LDT Freq	10.00
52	PRT 77	LDT Restart DT	300.0	53	M2 25	M2-V/F Patt	1: Square
54	M2 28	M2-Stall Lev	110	55	M2 29	M2-ETH 1min	110

8.16.5 Circul Pump(MC5)그룹

Γ

매크로 코드	코드	LCD 표시	초기 값	매크로 코드	코드	LCD 표시	초기 값
0	-	Jump Code	1: CODE	1	DRV 3	Acc Time	0.75~90kW 30.0 110~250kW 90.0 315~500kW 150.0
2	DRV 4	Dec Time	0.75~90kW 50.0 110~250kW 150.0 315~500kW 250.0	3	DRV 7	Freq Ref Src	1: Keypad-2
4	DRV 9	Control Mode	1: Slip Compen	5	DRV 11	JOG Frequency	15.00
6	DRV 12	JOG Acc Time	30.0	7	DRV 13	JOG Dec Time	50.0
8	DRV 15	Torque Boost	1: Auto1	9	BAS 7	V/F Pattern	1: Square
10	BAS 70	Acc Time-1	30.0	11	BAS 71	Dec Time-1	50.0
12	BAS 72	Acc Time-2	32.0	13	BAS 73	Dec Time-2	52.0
14	BAS 74	Acc Time-3	34.0	15	BAS 75	Dec Time-3	54.0
16	BAS 76	Acc Time-4	36.0	17	BAS 77	Dec Time-4	56.0
18	BAS 78	Acc Time-5	38.0	19	BAS 79	Dec Time-5	58.0
20	BAS 80	Acc Time-6	40.0	21	BAS 81	Dec Time-6	59.0
22	BAS 82	Acc Time-7	42.0	23	BAS 83	Dec Time-7	60.0
24	ADV 10	Power-on Run	1: Yes	25	ADV 25	Freq Limit Lo	20.00
26	ADV 50	E-Save Mode	2: Auto	27	ADV 64	FAN Control	2: Temp Control
28	ADV 65	U/D Save Mode	1: Yes	29	CON 4	Carrier Freq	3.0
30	CON 70	SS Mode	0: Flying Start-1	31	CON 77	KEB Select	1: Yes
32	OUT 32	Relay 2	14: Run	33	PID 1	PID Sel	1: Yes
34	PID 3	PID Output	-	35	PID 4	PID Ref Value	-
36	PID 5	PID Fdb Value	-	37	PID 10	PID Ref 1 Src	4: 12

38	PID 11	PID Ref 1 Set	5.000	39	PID 25	PID P-Gain 1	50.00
40	PID 26	PID I-Time 1	5.0	41	PID 50	PID Unit Sel	2: PSI
42	PID 51	PID Unit Scale	3: x0.1	43	AP1 8	PID Sleep1Freq	10.00
44	AP1 21	Pre-PID Freq	30.00	45	AP1 22	Pre-PID Delay	120.0
46	PRT 8	RST Restart	11	47	PRT 9	Retry Number	3
48	PRT 10	Retry Delay	5.0	49	PRT 11	Lost KPD Mode	3: Dec
50	PRT 12	Lost Cmd Mode	3:Hold Input	51	PRT 40	ETH Trip Sel	1: Free Run
52	PRT 42	ETH 1min	120	53	PRT 52	Stall Level 1	130
54	PRT 60	PipeBroken Sel	1: Warning	55	PRT 61	PipeBroken Lev	90.0
56	PRT 62	Pipe Broken DT	22.0	57	PRT 70	LDT Sel	1: Warning
58	PRT 72	LDT Source	0:Output Current	59	PRT 75	LDT Band Width	LDT Source 최대치의 10%
60	PRT 76	LDT Freq	10.00	61	PRT 77	LDT Restart DT	100.0
62	M2 4	M2-Acc Time	10.0	63	M2 5	M2-Dec Time	20.0
64	M2 25	M2-V/F Patt	1: Square	65	M2 28	M2-Stall Lev	125
66	M2 29	M2-ETH 1min	120				

8.16.6 VacuumPump(MC6)그룹

Γ

매크로 코드	코드	LCD 표시	초기 값	매크로 코드	코드	LCD 표시	초기 값
0	-	Jump Code	1: CODE	1	DRV 3	Acc Time	0.75~90kW 30.0 110~250kW 90.0 315~500kW 150.0
2	DRV 4	Dec Time	0.75~90kW 60.0 110~250kW 180.0 315~500kW 300.0	3	DRV 7	Freq Ref Src	1: Keypad-2
4	DRV 9	Control Mode	1: Slip Compen	5	DRV 11	JOG Frequency	20.00
6	DRV 12	JOG Acc Time	30.0	7	DRV 13	JOG Dec Time	60.0
8	DRV 15	Torque Boost	1: Auto1	9	BAS 7	V/F Pattern	1: Square
10	BAS 70	Acc Time-1	30.0	11	BAS 71	Dec Time-1	50.0
12	BAS 72	Acc Time-2	32.0	13	BAS 73	Dec Time-2	52.0
14	BAS 74	Acc Time-3	34.0	15	BAS 75	Dec Time-3	54.0
16	BAS 76	Acc Time-4	36.0	17	BAS 77	Dec Time-4	56.0
18	BAS 78	Acc Time-5	38.0	19	BAS 79	Dec Time-5	58.0
20	BAS 80	Acc Time-6	40.0	21	BAS 81	Dec Time-6	59.0
22	BAS 82	Acc Time-7	42.0	23	BAS 83	Dec Time-7	60.0
24	ADV 10	Power-on Run	1: Yes	25	ADV 25	Freq Limit Lo	40.00
26	ADV 64	FAN Control	2: Temp Control	27	ADV 65	U/D Save Mode	1: Yes
28	CON 4	Carrier Freq	3.0	29	CON 70	SS Mode	0: Flying Start-1
30	CON 77	KEB Select	1: Yes	31	OUT 32	Relay 2	14: Run
32	PID 1	PID Sel	1: Yes	33	PID 3	PID Output	-
34	PID 4	PID Ref Value	-	35	PID 5	PID Fdb Value	-
36	PID 10	PID Ref 1 Src	4: 12	37	PID 11	PID Ref 1 Set	5.000
38	PID 25	PID P-Gain 1	50.00	39	PID 26	PID I-Time 1	2.5

40	PID 50	PID Unit Sel	5: inWC	41	PID 51	PID Unit Scale	3: x0.1
42	AP1 21	Pre-PID Freq	30.00	43	PRT 8	RST Restart	11
44	PRT 9	Retry Number	3	45	PRT 10	Retry Delay	4.0
46	PRT 11	Lost KPD Mode	3: Dec	47	PRT 12	Lost Cmd Mode	3: Hold Input
48	PRT 40	ETH Trip Sel	1: Free Run	49	PRT 42	ETH 1min	120
50	PRT 52	Stall Level 1	130	51	PRT 60	PipeBroken Sel	1: Warning
52	PRT 61	PipeBroken Lev	90.0	53	PRT 62	Pipe Broken DT	22.0
54	PRT 66	DB Warn %ED	10	55	PRT 70	LDT Sel	1: Warning
56	PRT 72	LDT Source	0:Output Current	57	PRT 75	LDT Band Width	LDT Source 최대치의 10%
58	PRT 76	LDT Freq	15.00	59	PRT 77	LDT Restart DT	100.0
60	M2 4	M2-Acc Time	10.0	61	M2 5	M2-Dec Time	20.0
62	M2 8	M2-Ctrl Mode	1: Slip Compen	63	M2 25	M2-V/F Patt	1: Square
64	M2 28	M2-Stall Lev	125	65	M2 29	M2-ETH 1min	120

8.16.7 Constant Torque(MC7)그룹

Г

매크로 코드	코드	LCD 표시	초기 값	매크로 코드	코드	LCD 표시	초기 값
0	-	Jump Code	1:CODE	1	DRV 3	Acc Time	0.75~90kW 30.0 110~250kW 90.0 315~500kW 150.0
2	DRV 4	Dec Time	0.75~90kW 20.0 110~250kW 60.0 315~500kW 100.0	3	DRV 7	Freq Ref Src	1: Keypad-2
4	DRV 9	Control Mode	1: Slip Compen	5	DRV 12	JOG Acc Time	10.0
6	DRV 13	JOG Dec Time	20.0	7	DRV 15	Torque Boost	1: Auto1
8	BAS 70	Acc Time-1	10.0	9	BAS 71	Dec Time-1	20.0
10	BAS 72	Acc Time-2	12.5	11	BAS 73	Dec Time-2	22.5
12	BAS 74	Acc Time-3	15.0	13	BAS 75	Dec Time-3	25.0
14	BAS 76	Acc Time-4	17.5	15	BAS 77	Dec Time-4	27.5
16	BAS 78	Acc Time-5	20.0	17	BAS 79	Dec Time-5	30.0
18	BAS 80	Acc Time-6	22.5	19	BAS 81	Dec Time-6	32.5
20	BAS 82	Acc Time-7	25.0	21	BAS 83	Dec Time-7	35.0
22	ADV 1	Acc Pattern	1: S-curve	23	ADV 2	Dec Pattern	1: S-curve
24	ADV 25	Freq Limit Lo	20.00	25	ADV 74	RegenAvd Sel	1: Yes
26	CON 4	Carrier Freq	3.0	27	CON 70	SS Mode	0: Flying Start-1
28	CON 77	KEB Select	1: Yes	29	OUT 32	Relay 2	14: Run
30	AP1 21	Pre-PID Freq	30.00	31	AP1 22	Pre-PID Delay	120.0
32	PRT 12	Lost Cmd Mode	2: Dec	33	PRT 40	ETH Trip Sel	2: Dec
34	PRT 66	DB Warn %ED	10	35	PRT 70	LDT Sel	1: Warning
36	PRT 72	LDT Source	0:Output Current	37	PRT 75	LDT Band Width	LDT Source 최대치의 10%

38	PRT 76	LDT Freq	5.00	39	PRT 77	LDT Restart DT	250.0
40	M2 4	M2-Acc Time	10.0	41	M2 5	M2-Dec Time	20.0
42	M2 8	M2-Ctrl Mode	1: Slip Compen				

Г

9 문제 해결하기

이 장에서는 인버터 사용 중 제품의 보호 기능에 의해 트립 또는 경보 표시가 발생하거나 고장이 발생한 경우 해결 방법을 설명합니다. 고장 발생 시 다음 조치 사항을 확인한 후에도 인버터가 정상적으로 동작하지 않으면 구입처나 LS ELECTRIC 고객 센터에 문의하십시오.

9.1 트립과 경보

인버터가 고장 상태를 감지하면 내부 회로를 보호하기 위해 정지(트립)하거나 경보 표시를 내보냅니다. 트립이나 경보 표시 발생 시 키패드에는 상세 트립/경보 내용이 표시됩니다. 트립이 2개 이상 발생한 경우, 키패드에는 우선 순위가 높은 트립 정보를 먼저 표시하며, 방향 키로 다음 트립 정보를 확인 할 수 있습니다.

고장 상태는 다음과 같이 구분합니다.

- 레벨(Level): 고장 상태가 개선되면 자동으로 트립/경보 표시가 해제됩니다. 고장 이력에는 저장되지 않습니다.
- 래치(Latch): 고장 상태가 개선된 후 리셋 신호가 입력되면 트립/경보 표시가 해제됩니다.
- 하드웨어 오류(Fatal): 고장 상태가 개선된 후 인버터 전원을 차단하고 충전 표시등 전원이 꺼진 후 다시 전원을 켜면 트립/경보 표시가 해제됩니다. 전원을 다시 켜도 계속 고장 상태를 유지할 경우 구입처나 LS ELECTRIC 고객 센터에 문의하십시오.

9.1.1 트립(Trip) 항목

출력 전류 및 입력 전압 보호

LCD 표시	고장 상태	내용
Over Load		모터 과부하 트립을 선택한 후 모터 부하량이 설정한 양을
	Latch	초과하면 발생합니다. PRT-20 코드를 0 이외의 값으로
		설정해야 동작합니다.

LCD 표시	고장 상태	내용				
Under Load	Latch	경부하 보호 기능을 선택한 후, 모터 부하량이 설정된 경부하 레벨 이하일 경우 발생합니다. PRT-27 코드를 0 이외의 값으로 설정해야 동작합니다.				
Over Current1	Latch	인버터 출력 전류가 정격 전류의 180%를 초과할 때 발생합니다.				
Over Voltage	Latch	직류부 회로의 전압이 규정 값 이상일 경우 발생합니다.				
Low Voltage	Level	직류부 회로의 전압이 규정 값 이하일 경우 발생합니다.				
Low Voltage2	Latch	인버터 운전 중 직류부 회로의 전압이 규정 값 이하일 경우 발생합니다.				
Ground Trip	Latch	인버터 출력 측에 지락이 발생하여 규정 값 이상의 전류가 흐르면 발생합니다. 인버터 용량별로 지락 검출 전류에 차이가 있습니다.				
E-Thermal	Latch	모터 과부하 운전 시 과열을 막기 위하여 반한시 특성에 따라 발생합니다. PRT-40 코드를 0 이외의 값으로 설정해야 동작합니다.				
Out Phase Open	Latch	인버터 3상 출력 중 1상 이상이 결상되면 발생합니다. PRT-05 코드의 비트1을 1로 설정해야 동작합니다.				
In Phase Open	Latch	인버터 3상 입력 중 1상 이상이 결상되면 발생합니다. PRT-05 코드의 비트2를 1로 설정해야 동작합니다.				
Inverter OLT	Latch	인버터 과열 보호를 위한 반한시 특성 보호 기능입니다. 인버터 정격 전류 기준으로 120%, 1 분, 140%,5 초입니다.				
No Motor Trip	Latch	인버터 운전 시 모터가 연결되지 않으면 발생합니다. PRT-31 코드를 1 로 설정해야 동작합니다.				

인버터 내부 회로 이상 및 외부 신호 보호

Γ

LCD 표시	고장 상태	내용
Over Heat	Latch	인버터 방열판의 온도가 규정 값 이상 상승하면 발생합니다.
Over Current2	Latch	인버터 내부의 직류부가 단락된 전류 크기를 검출하면 발생합니다.

LCD 표시	고장 상태	내용
Extornal Trin	Latch	다기능 단자의 기능 선택에 의한 외부 고장 신호입니다. IN-
	Laton	65~71 코드의 기능 중 4(External Trip)를 선택합니다.
BX		다기능 단자의 기능 선택에 따라 인버터 출력을 차단합니다.
		IN-65~71 코드의 기능 중 5(BX)를 선택합니다.
		인버터 내부의 기억 장치(EEPRom), 아날로그-디지털 변환기
		출력(ADC Off Set), CPU 감시 동작(Watch Dog-1, Watch Dog-2)
H/W-Diag		등에 이상이 검출되면 발생합니다.
	Fatal	• EEP Err: 키패드, 인버터 내부의 기억 장치 소손 등으로
		파다미터 읽기/쓰기에 문제가 결정한 경우
		• ADC Off Set: 신규 검지구(U/V/W 인자, 신규 센지 등)에 무제가 발생하 경으
		전려요 바드체//CPT)이 오드 거축 세서에 이사이 거축되며
NTC Open	Latch	발생합니다.
		생각 팬에 이상이 검출되면 발생합니다. PRT-79 코드를 0 으로
Fan Trip	Latch	선택하면 동작합니다.
		110kW ~250KW 인버터 용량에서 인버터 내부 냉각팬에
		이상이 검출되면 발생합니다.
InFan Trip	Latch	PRT-79 코드를 0으로 선택하면 동작합니다.
		*315kW 인버터에 내부 냉각용 팬이 존재하나 이 기종들의
		내부팬 고장시에는 Fan Trip 으로 발생합니다.
Thermal Trip	Latch	유저가 설정한 레벨 이상의 온도가 입력될 시 발생합니다.
Lost KeyPad	Latch	PRT-11 Lost KPD Mode 가 0 이 아닌 다른 번호로 설정 한
		상태에서 운전 지령이 KeyPad 상태에서 키패드와 본체간의
		통신에 이상이 검출되면 발생합니다.
Fuse Open	Latch	315kW 이상 인버터에서 입력단 퓨즈가 끊어질 시 고장이
		발생합니다.

٦

일반 고장

LCD 표시	고장 상태	내용
Damper Err	Latch	Fan 부하 운전 시 Damper Open 신호 혹은 운전 지령 신호만 유저가 설정한 AP2-45 Damper Check T 보다 길게 유지될 시 발생합니다.
MMC Interlock	Latch	MMC 운전시 AP1-55 코드가 2 로 설정되어 있고, 모든 보조 모터에 Interlock 이 발생했을 경우에 발생합니다.
CleanRPTErr	Latch	Pump Celan 동작이 빈번히 발생시 발생하는 고장입니다. 이는 AP2-36~AP2-37 번 설정에 따라 변경될 수 있습니다
Pipe Broken	Latch	펌프 운전시 파이프가 파손이 된경우 발생합니다. PRT-60 을 설정해야 합니다.
Level Detect	Latch	인버터 운전시 유저가 설정한 전류 혹은 파워가 설정값 이상 혹은 이하값으로 동작할 시 동작합니다. PRT-71~PRT-77 을 설정해 주어야 합니다.
Broken Belt	Latch	PRT-91 을 Free Run 으로 설정 후 인버터 운전이 BrokenBelt 동작 가능한 상황이 경우 발생합니다.

옵션 보호

Γ

LCD 표시	고장 상태	내용
	Level	키패드 이외의 방법(단자대, 통신)으로 주파수 지령이나 운전
Lost Command		지령을 입력하는 경우 지령에 이상이 검출되면 발생합니다.
		PRT-12 코드를 0 이외의 값으로 설정해야 동작합니다.
IO Boord Trip	Lotob	I/O 보드 또는 외장형 통신 카드가 인버터와 연결되지
Ювоаго пр	Latch	않았거나 접촉 상태가 불량한 경우 발생합니다.
TB Trip	Latch	제어 단자대 (Terminal Bolck)이 분리되었거나 접촉 상태가
		불량한 경우 발생 합니다.
		LCD 로더 전선 이상 또는 접촉 불량 등으로 파라미터 쓰기
ParaWrite Trip	Latch	중에 통신이 이루어지지 않으면 발생합니다.LCD 로더를
		사용할 때 나타납니다.
Option Trip 1	Latch	인버터와 통신 옵션 간의 통신 이상이 검출되면 발생합니다.
Option Trip-1		옵션을 사용할 때 나타납니다.

문제 해결

9.1.2 경보(Warning) 항목

LCD 표시	내용	
Over Load	모터가 과부하 상태가 되면 경보 신호를 발생합니다. PRT-17 코드를 1 로 선택해야 동작합니다. 출력 신호는 OUT-31~35, OUT-36 코드를 5(Over Load)를 선택합니다.	
Under Load	경부하 상황에 대한 경보가 필요한 경우 PRT-25 코드를 1로 선택합니다. 출력 신호는 OUT-31~35, OUT-36 코드를 7(Under Load)을 선택합니다.	
INV Over Load	인버터 과부하 보호(IOLT) 기능 동작 시간의 60%에 해당하는 시간이 누적되면 경보 신호를 발생합니다. 출력 신호는 OUT- 31~35, OUT-36 코드를 6(IOL)으로 선택합니다.	
Lost Command	PRT-12 코드가 0 인 상태에서도 경보 신호를 출력할 수 있습니다. PRT-13~15 코드에서 설정된 조건에 의해 경보 신호를 발생합니다. 지령 상실 출력 신호를 받으려면 OUT- 31~35, OUT-36 코드 13(Lost Command)을 선택합니다.	
Fan Warning	PRT-79 코드가 1 로 설정된 상태에서 냉각 팬에 이상이 검출되면 경보 신호를 발생합니다. 팬 경보 출력 신호를 받으려면 OUT-31~35, OUT-36 코드 중 8(Fan Warning)을 선택합니다.	
DB Warn %ED	제동 저항 사용률이 설정 값 이상이 되면 경보 신호를 발생합니다. PRT-66 코드에서 검출 레벨을 설정합니다.	
Fire Mode	운전 중 화재가 발생하였을 경우 일부 고장이 발생하여도 연속 운전하게 하는 기능이며 이 때 경보 신호를 발생합니다. Fire Mode 경보 출력신호를 받으려면 OUT-31~35, OUT-36 코드에서 27(Fire Mode)를 선택합니다.	
Pipe Broken	Pump 운전시 파이프 관이 손상되었을 경우 경보 신호를 발생합니다. 파이프 손상 경보 신호를 받으려면 OUT-31~35, OUT-36 코드에서 28(Pipe Broken)을 선택합니다.	
Lost Keypad	PRT-11 Lost KPD Mode 가 0 이 아닌 다른 번호로 설정한 상태에서 운전 지령이 KeyPad 상태에서 키패드와 본체간의 통신에 이상이 검출되면 발생합니다. 이 경보 신호를	

LCD 표시	내용		
	받으려면 OUT-31~35, OUT-36 코드 24(Lost KPD)를 설정합니다.		
Level Detect	Level Detect 상태일 경우 경보를 발생합니다. PRT-70 코드를 1 : Warning 로 해야 발생 합니다.		
CAP. Warning	Capacitor 수명 레벨이 유저가 설정한 레벨 미만으로 감소 했을시 경보 신호를 발생합니다. 이 경보 신호를 받으려면 OUT-31~35, OUT-36 코드를 34(CAPWarning)로 설정합니다.		
Fan ExChange	Fan을 교체해야 할 시에 경보 신호를 발생합니다. 이 경보 신호를 받으려면 OUT-31~35, OUT-36 코드를 35(FanExChange) 로 설정합니다.		
Low Battery	PRT-90 Low Battery 코드를 YES 로 설정하면 RTC 용 배터리 전압이 2[V] 미만인 경우 경보 신호를 발생합니다.		
Broken Belt	PRT-91 을 Warning 으로 설정 한 후 인버터 운전이 BrokenBelt 동작 가능한 상황이 경우 발생합니다.		
Load Tune	AP2-03,04의 값이 AP2-09,10의 값보다 큰경우와 같이 부하 튜닝이 정상적이지 않을 때 발생 합다.		
ParaWrite Fail	스마트 카피어 동작이 정상적이지 않은 경우 발생 합니다.		
Rs Tune Err	전동기를 연결하지 않고 오토 튜닝 하는 경우와 같이 RS 튜닝이 정상 적이지 않은 경우 발생 합니다.		
Lsig Tune Err	전동기를 연결하지 않고 오토 튜닝 하는 경우와 같이 Lsigma 튜닝이 정상적이지 않은 경우 발생 합니다.		
KPD H.O.A Lock	[DRV-05 KPD H.O.A Lock] 설정에 의해 키패드의 HAND-OFF- AUTO 키가 비활성화 되었을 때 사용자가 키패드의 HAND- OFF-AUTO 키를 누를경우 1초간 발생합니다.		
InFan Warning	110kW~250kW 인버터에서 내부팬에 고장 상태일 때 발생합니다.		
Sleep	PID 운전 대기(Sleep)모드 상태임을 표시 합니다.		

Γ

9.2 트립 발생 시 조치 사항

제품의 보호 기능에 의해 트립이나 경보 표시가 발생한 경우 다음 내용을 참조하십시오.

항목	진단	조치 사항
Over Load	부하가 모터 정격보다 큽니다.	용량이 큰 모터와 인버터로 교체하십시오.
	과부하 트립 레벨(PRT-21)에서 설정한 값이 작습니다.	과부하 트립 레벨의 설정 값을 높이십시오.
Under Load	모터와 부하의 연결에 문제가 있습니다.	용량이 작은 모터와 인버터로 교체하십시오.
	경부하 레벨(PRT-24)이 시스템 최소 부하량보다 크게 설정되어 있습니다.	경부하 레벨의 설정 값을 낮추십시오.
	부하의 관성(GD²)에 비해 가/감속 시간이 너무 짧습니다.	가/감속 시간을 길게 설정하십시오.
	인버터의 부하가 정격보다 큽니다.	용량이 큰 인버터로 교체하십시오.
Over Current1	모터 공회전 중에 인버터 출력이 인가되었습니다.	모터가 정지한 후에 운전하거나 속도 써치 기능(CON-70)을 사용하십시오.
	모터의 기계 브레이크 동작이 너무 빠릅니다.	기계 브레이크를 확인하십시오.
Over Voltage	부하의 관성(GD²)에 비해 감속 시간이 너무 짧습니다.	감속 시간을 길게 설정하십시오.
	인버터 출력 측에 회생 부하가 있습니다.	제동 유닛을 사용하십시오.
	입력 전원 전압이 높습니다.	입력 전원 전압이 규정 값 이상인지 확인하십시오.
Low Voltage	입력 전원 전압이 낮습니다.	입력 전원 전압이 규정 값 이하인지 확인하십시오.

항목	진단	조치 사항
	전원 계통에 전원 용량보다 큰 부하가 연결되었습니다(용접기, 모터 직입 등).	전원 용량을 높이십시오.
	전원 측 전자 접촉기가 불량입니다.	전자 접촉기를 교체하십시오.
	운전 중 입력 전원 전압이 낮아졌습니다.	입력 전원 전압이 규정 값 이하인지 확인하십시오.
Low Voltage2	입력 전원 전압이 낮은 상태에서 입력 결상이 발생했습니다.	입력 배선을 확인하십시오.
	전원 측 전자 접촉기가 불량입니다.	전자 접촉기를 교체하십시오.
	인버터의 출력선이 지락되었습니다.	출력 배선을 확인하십시오.
Ground Trip	모터의 절연이 파손되었습니다.	모터를 교체하십시오.
	모터가 과열되었습니다.	부하 또는 운전 빈도를 줄이십시오.
	인버터의 부하가 정격보다 큽니다.	용량이 큰 인버터로 교체하십시오.
E-Thermal	모터 과열 방지(ETH) 레벨을 낮게 설정했습니다.	모터 과열 방지(ETH) 레벨을 적절하게 설정하십시오.
	인버터를 저속에서 장시간 운전했습니다.	모터의 냉각 팬 전원을 별도로 공급할 수 있는 모터로 교체하십시오.
Out Phase Open	출력 측 전자 접촉기의 접촉 불량이	출력 측 전자 접촉기를
	발생했습니다.	확인하십시오.
	출력 배선 불량이 발생했습니다.	출력 배선을 확인하십시오.
	입력 측 전자 접촉기의 접촉 불량이	입력 측 전자 접촉기를
	발생했습니다.	<u>확인하십시오.</u>
In Phase	입력 배선 물량이 발생하였습니다.	입력 배선을 확인하십시오.
орен	DC 링크 콘덴서를 교체할 시기가 되었습니다.	DC 링크 콘덴서를 교체하십시오. 구입처나 LS ELECTRIC 고객 센터에 문의하십시오.

Γ

문제 해결

항목	진단	조치 사항
Inverter OLT	부하가 인버터 정격보다 큽니다.	용량이 큰 모터와 인버터로 교체하십시오.
	토크 부스트 양이 너무 큽니다.	토크 부스트 양을 줄이십시오.
Over Heat	냉각 계통에 이상이 있습니다.	공기 흡입구, 배출구, 통풍구에 이물질이 있는지 확인하십시오.
	인버터의 냉각 팬을 장기간 사용했습니다.	냉각 팬을 교체하십시오.
	주위 온도가 높습니다.	주위 온도를 50℃ 이하로 유지하십시오.
	출력선이 합선되었습니다.	출력 배선을 확인하십시오.
Over Current2	전력용 반도체(IGBT)에 문제가 발생하였습니다.	이런 경우, 인버터를 운전할 수 없습니다. 구입처나 LS ELECTRIC 고객 센터에 문의하십시오.
NTC Open	주위 온도가 너무 낮습니다.	주위 온도를 -10℃ 이상으로 유지하십시오.
	인버터 내부 온도 센서에 문제가 발생하였습니다.	구입처나 LS ELECTRIC 고객 센터에 문의하십시오.
Fan Lock / In Fan	팬이 위치한 인버터 통풍구에 이물질이 끼어 있습니다.	공기 흡입구와 배출구에 이물질이 있는지 확인하십시오.
	생각 팬 교체 시기가 되었습니다.	냉각 팬을 교체하십시오.

9.3 기타 문제 발생 시 조치 사항

제품의 보호 기능에 따른 트립이나 경보 표시 외의 문제가 발생한 경우 다음 내용을 참조하십시오.

항목	진단	조치 사항
파라미터를 설정할 수 없습니다.	인버터가 운전 중(드라이브 모드)입니다.	인버터를 정지한 다음 프로그램 모드로 변경하고 파라미터를 설정하십시오.
	파라미터 액세스 레벨이 올바르지 않습니다.	정확한 파라미터 액세스 레벨을 확인한 후 파라미터를 설정하십시오.
	암호가 일치하지 않습니다.	암호를 확인하여 파라미터 잠금을 해제한 후 파라미터를 설정하십시오.
	저전압이 검출되었습니다.	전원 입력을 확인하여 저전압 문제를 해결한 후 파라미터를 설정하십시오.
모터가 회전하지 않습니다.	주파수 지령 방법을 잘못 설정하였습니다.	주파수 지령 방법 설정을 확인하십시오.
	운전 지령 방법을 잘못 설정했습니다.	운전 지령 설정 방법을 확인하십시오.
	R/S/T 단자에 전원이 공급되지 않습니다.	R/S/T 단자, U/V/W 단자의 접속을 확인하십시오.
	충전 표시등이 꺼져 있습니다.	인버터의 전원을 켜십시오.
	운전 지령(RUN)이 오프(Off)되어 있습니다.	운전 지령(RUN)을 온(On)하십시오.
	모터가 구속되어 있습니다.	모터의 구속을 해제하거나 부하를 줄이십시오.
	부하가 너무 무겁습니다.	모터를 단독으로 운전하십시오.
	비상 정지 신호가 입력되어 있습니다.	비상 정지 신호를 해제하십시오.
	제어 회로 단자의 배선이 올바르지 않습니다.	제어 회로 배선을 확인하십시오.

Γ

항목	진단	조치 사항
	주파수 지령 입력 방법이 잘못되었습니다.	주파수 지령 입력 방법을 확인하십시오.
	주파수 지령의 전압/전류 입력이 잘못되었습니다.	주파수 지령의 전압/전류 입력을 확인하십시오.
	PNP/NPN 모드가 잘못 선택되었습니다.	PNP/NPN 모드 설정을 확인한 후 운전하십시오.
	주파수 지령 값이 너무 낮습니다.	주파수 지령을 확인하여 최저 주파수 이상의 운전 주파수를 입력하여 운전하십시오.
	[OFF] 키를 눌렀습니다.	정상적으로 정지된 상태이므로 다시 운전하십시오.
	모터의 토크가 낮습니다.	토크 부스트 량을 키워서 운전하십시오. 동일한 현상이 지속되는 경우 용량이 큰 인버터로 교체하십시오.
모터가 지령과 역방향으로 회전합니다.	모터 출력 배선이 잘못 연결되었습니다.	모터의 상(U/V/W)에 맞게 출력 측이 배선되었는지 확인하십시오.
	인버터의 제어 회로 단자(정방향 회전/역방향 회전)와 제어반 측의 정방향 회전/역방향 회전 신호 접속이 올바르지 않습니다.	정방향 회전/역방향 회전 배선을 확인하십시오.
모터가 한 방향으로만 회전합니다.	역방향 회전 금지가 설정되어 있습니다.	역방향 회전 금지 설정을 해제한 후 운전하십시오.
	3-와이어(3-Wire) 시퀀스를 선택했지만 역방향 회전 신호가 입력되어 있지 않습니다.	3-와이어(3-Wire) 운전 관련 입력 신호를 확인하여 올바르게 조정하십시오.
모터가 이상 발열합니다.	부하가 너무 큽니다.	부하를 줄이십시오. 가/감속 시간을 길게 설정하십시오.

항목	진단	조치 사항
		모터 관련 파라미터를 확인하고
		정확한 값을 설정하십시오.
		부하량에 맞는 용량의 모터와
		인버터로 교체하십시오.
	모터의 주위 온도가 높습니다.	모터의 주위 온도를 낮추십시오.
		모터 상간의 서지 내압이 최대
		서지 전압보다 높은 모터를
		사용하십시오.
	모터의 상간 내압이 부족합니다.	인버터 전용 모터를 사용하십시오.
		출력 측에 교류 리액터를
		연결하십시오(캐리어 주파수 3kHz
		설정).
	모터의 팬이 정지했거나 팬에	모터의 팬을 확인하여 이물질을
	이물질이 끼어 있습니다.	제거하십시오.
	부하가 너무 큽니다.	부하를 줄이십시오.
		토크 부스트 량을 키워서
가속 시에 모터가 멈춥니다		운전하십시오.
		부하량에 맞는 용량의 모터와
		인버터로 교체하십시오.
		부하가 많지 않은데 전류가 크면
	전류가 너무 큽니다.	토크 부스트 량을 낮춰서
		운전하십시오.
부하 접속 시에		부하를 줄이십시오.
모터가	부하가 너무 큽니다.	부하량에 맞는 용량의 모터와
멈춥니다.		인버터로 교체하십시오.
모터가 가속하지	조파스이 지려 가이 나스니다	주파수 지령을 확인하여 값을
않습니다./모터의	ㅜ피구의 지당 없이 붓습니다.	입력하십시오.

Γ

항목	진단	조치 사항
가속 시간이 깁니다.		부하를 줄이십시오. 가속 시간을 늘리십시오.
	부하가 큽니나.	기계 브레이크의 상태를 확인하십시오.
	가속 시간이 너무 깁니다.	가속 시간을 확인하여 변경하십시오.
	모터 특성과 인버터 파라미터의 조합 값이 올바르지 않습니다.	모터 관련 파라미터를 확인하여 변경하십시오.
	가속 중 스톨 방지 레벨이 낮습니다.	스톨 방지 레벨을 확인하여 변경하십시오.
	운전 중 스톨 방지 레벨이 낮습니다.	스톨 방지 레벨을 확인하여 변경하십시오.
	부하 변동이 큽니다.	용량이 큰 모터와 인버터로 교체하십시오.
운전 중에 모터 회전 수가	전원 전압이 변동하고 있습니다.	전원 전압의 변동을 작게 하십시오.
먼동됩니다.	특정 주파수에서 발생합니다.	공진 영역을 회피하기 위해 출력 주파수를 조정하십시오.
모터 회전이 설정된 방법과 맞지 않습니다.	V/F 패턴이 잘못 설정되었습니다.	모터 규격에 맞는 V/F 패턴을 설정하십시오.
제동 저항을 연결해도 모터의 감속 시간이 너무 깁니다.	감속 시간이 길게 설정되어 있습니다.	감속 시간을 확인하여 설정을 변경하십시오.
	모터의 토크가 부족합니다.	모터 관련 파라미터가 정상인 경우 모터 능력의 한계이므로 용량이 큰 모터로 교체하십시오.
	인버터의 전류 제한치 이상의 부하가 걸려 있습니다.	용량이 큰 인버터로 교체하십시오.

항목	진단	조치 사항
인버터를 기동하면 다른 제어 장치가	인버터 내부의 스위칭에 의해 노이즈가 발생합니다.	캐리어 주파수를 최소 값으로 변경하십시오.
잘못 동작하거나 노이즈가 발생합니다.		마이크로 서지 필터를 인버터 출력 측에 설치하십시오.
		인버터를 전용 접지 단자에 연결해 접지하십시오.
		접지 저항이 200V 급 100Ω, 400V 급 10 Ω 이하인지 확인하십시오.
인버터를 운전하면 누전 차단기가 동작합니다.	인버터에서 발생하는 누설 전류에 의해 누전 차단기가 동작합니다.	누전 차단기의 용량을 확인하여 인버터 정격 전류에 맞추어 연결하십시오.
		캐리어 주파수를 낮게 설정하십시오.
		인버터와 모터의 배선 길이가 긴 경우 가급적 배선 길이를 짧게 하십시오.
모터가 크게		입력 전원 전압을 확인하여
진동하고 정상적으로 회전하지 않습니다.	상간 전압의 밸런스가 나쁩니다.	전원을 안정시키십시오. 모터의 절연 상태를 확인하십시오.
모터에서	모터의 고유 진동 수와 캐리어	캐리어 주파수를 약간 올리거나
웅웅거리는	수파수와의 공신이 말생합니나.	내려수십시오.
소리나 날카로운	모터의 고유 진동 수와 인버터 출력	운전 주파수를 약간 올리거나
	주파수와의 공진이 발생합니다.	내려 주십시오.

Γ

문제 해결

항목	진단	조치 사항
소리가 들립니다.		공진이 발생하는 주파수 대역을 회피하기 위해 주파수 점프 기능을 사용하십시오.
모터가	주파수 지령이 외부로부터 아날로그 지령으로 입력되어 있습니다.	아날로그 입력 측에 노이즈 등이 유입되어 주파수 지령에 간섭이 발생한 경우 입력 필터 시정 수(IN-07) 값을 변경하십시오.
진동/헌팅합니다.	인버터와 모터의 배선 길이가 너무 깁니다.	인버터와 모터의 총 배선 길이를 200m 이내로 하십시오(3.7kW 이하 모터 사용 시에는 50m 이내).
인버터 출력이		직류 제동 관련 파라미터를 조정하십시오.
정지해도 모터가 완전히 정지하지	정지 시 직류 제동이 정상적으로 동작하지 않아 충분히 감속할 수	직류 제동 전류의 설정 값을 크게 조정하십시오.
않습니다.	ᆹ급니다.	정지 시 직류 제동 시간의 설정 값을 크게 조정하십시오.
출력 주파수가	목표 주파수가 점프 주파수의 범위 안에 있습니다.	목표 주파수를 점프 주파수 범위 밖으로 설정하십시오.
목표 주파수까지 올라가지	목표 주파수가 주파수 지령의 상한 값을 초과하고 있습니다.	주파수 지령의 상한 값을 목표 주파수 이상으로 설정하십시오.
않습니다.	부하가 너무 커서 가속 중 스톨 방지 기능이 동작하고 있습니다.	용량이 큰 인버터로 교체하십시오.
냉각 팬이 회전하지 않습니다.	냉각 팬 제어 파라미터가 잘못 설정되었습니다.	냉각 팬 제어 파라미터 설정 값을 확인하십시오.

10 유지/보수하기

이 장에서는 제품의 냉각 팬 교체 방법과 일상/정기 점검 사항, 제품의 올바른 보관 방법, 그리고 사용하지 않는 제품의 올바른 폐기 방법을 설명합니다. 인버터는 주위 환경의 영향을 많이 받는 전자 기기 제품으로, 부품의 노화에 의해 고장이 발생할 수 있습니다. 고장으로 인한 운전 중단을 미연에 방지하기 위해 다음 유지/보수 관련 내용을 확인하십시오.

① 주의

Г

- 제품을 점검하기 전에 사용 설명서의 안전을 위한 주의 사항을 확인하십시오.
- 제품을 청소하기 전에 제품의 전원이 꺼져 있는지 반드시 확인하십시오.
- 마른 천으로 제품을 청소하십시오. 젖은 천이나 물, 솔벤트, 세제를 사용하는 경우 작업자가 감전되거나 제품이 파손될 수 있습니다.

10.1 일상/정기 점검 항목

10.1.1 일상 점검

점검 부위	점검 항목	점검 사항	점검 방법	판정 기준	점검 기기
전체	주위 환경	주위 온도, 습도가 적절하며, 분진 등이 없는가?	<u>10 페이지, 1.3</u> <u>설치 환경</u> <u>확인</u> 참조	주위 온도 -10~50°C 으로 동결 위험이 없고, 주위 습도 90% 이하로 이슬 맺힘이 없을 것	온도계, 습도계, 기록계
	장치 전체	이상 진동이나 소음은 없는가?	육안 점검	이상이 없을 것	

유지/보=

점검 부위	점검 항목	점검 사항	점검 방법	판정 기준	점검 기기
	전원 전압	입출력 전압은 정상인가?	단자대 R/S/T 상 사이의 전압 측정	<u>516 페이지,</u> <u>11.1 입력 및</u> <u>출력 규격</u> ^{참조}	디지털 멀티미터/테스터
입출력 회로	평활 콘덴서	내부의 액이 새지는 않았는가? 콘덴서가 불룩해지지 않았는가?	육안 점검	이상이 없을 것	-
냉각 계통	냉각 팬	이상 진동이나 소음은 없는가?	전원을 끈 상태에서 손으로 팬을 돌리면서 확인	부드럽게 회전할 것	-
표시	측정 장치	지시 값은 정상인가?	패널 표면의 표시 기기의 지시 값 확인	규정 값, 관리 값을 확인할 것	전압계/전류계 등
모터	전체	이상 진동이나 소음은 없는가? 이상한 냄새는 없는가?	육안 점검 과열, 손상 등 확인	이상이 없을 것	-

10.1.2 <mark>정기 점검(1 년 주기)</mark>

점검 부위	점검 항목	점검 사항	점검 방법	판정 기준	점검 기기
입출력 회로	전체	메거 테스트(입출력	인버터의 배선 제거 후 R/S/T/U/V/W	5MΩ 이상일 것	DC 500V 급 메거

점검 부위	점검 항목	점검 사항	점검 방법	판정 기준	점검 기기
		단자와 접지 단자 사이)	단자를 합선하여 이 부분과 접지 단자 사이를 메거로 측정		
		고정부가 느슨하지 않은가?	나사를 조일 것	이상이 없을	
		각 부품의 과열 흔적은 없는가?	육안 점검	것	
	접속도체	도체에 부식은 없는가?	유아 저거	이상이 없을	_
	/전선	전선 피복의 파손은 없는가?		것	
	단자대	손상되어 있지 않은가?	육안 점검	이상이 없을 것	-
	평활 콘덴서	정전 용량 측정	용량 측정기로 측정	정격 용량 85% 이상	용량계
	리페이	동작 시 채터링 음은 없는가?	육안 점검	이상이 없을	
	필데이	접점에 손상은 없는가?	육안 점검	것	-
		저항의 손상은 없는가?	육안 점검	이상이 없을 것	
	저항	단선 여부 확인	한쪽의 연결을 떼어 내고 테스터로 측정	표시된 저항 값의 ±10% 이내 오차 범위 내에 있을 것	디지털 멀티미터/아날 로그 테스터

Γ

유지/보수

점검 부위	점검 항목	점검 사항	점검 방법 판정 기준		점검 기기
제어 회로 보호 회로	동작 확인	인버터 운전 중에 각 출력 전압의 불평형 여부 확인	인버터 출력 단자 U/V/W 간 전압 측정	상간 전압 밸런스 200V 급은 4V, 400V 급은 8V 이내	디지털 멀티미터/직류
		시퀀스 보호 동작 시험을 실시한 후 표시 회로에 이상이 없는가?	인버터 보호 회로 출력을 강제 합선 또는 개방	시퀀스에 따라 이상 회로가 동작할 것	형 전압계
냉각 계통	냉각 팬	접속부가 느슨하지 않은가?	커넥터 연결부 확인 후 나사를 조일 것	이상이 없을 것	-
표시	표시 장치	지시 값은 정상인가?	표시 장치의 지시 값 확인	규정 값과 관리 값이 일치할 것	전압계/전류계 등

10.1.3 정기 점검(2 년 주기)

점검 부위	점검 항목	점검 사항	점검 방법	판정 기준	점검 기기
모터	절연 저항	메거 테스트(출력 단자와 접지 단자 사이)	U/V/W 단자의 배선 제거 후 테스트 배선할 것	5MΩ 이상	DC 500V 급 메거

① 주의

ſ

제어 회로에는 메거(Megger) 테스트(절연 저항 측정)를 수행하지 마십시오. 제품이 파손될 수 있습니다.

10.1.4 특별 점검(RTC 용 배터리 교체)

H100 제품은 RTC 용 배터리가 내장되어 있습니다. 배터리 수명이 다 했을 시 인버터 전원을 OFF 한 상태에서 교체합니다. 배터리는 인버터 내부의 I/O 보드에 내장되어 있으므로 LCD 로더(키패드), 인버터 본체, 전면 커버를 분리한 후에 교체합니다.

5.5~30kW(3 상)

110~185kW(3 상)

37~90kW(3 상)

^{220~500}kW(3 상)

① 주의

- 배터리는 보드에 장착되어 있으므로 절연이 되어 있어 감전의 위험이 없는 도구를 이용하여 탈착하십시오.
- 배터리 교체시 감전에 우려가 없도록 인버터 전원은 꼭 OFF 한 후 일정 시간이 지난 뒤에 교체하십시오
- 배터리 수명 : 53,300 시간 (인버터 전원 ON) / 25,800 시간 (인버터 전원 OFF)

10.2 제품의 올바른 보관 및 폐기

10.2.1 제품의 올바른 보관

제품을 장기간 사용하지 않을 때는 다음 조건에서 보관하십시오.

- 제품 동작에 적합한 환경에서 보관하십시오(10 페이지, 1.3 설치 환경 확인 참조).
- 제품을 3개월 이상 보관하는 경우 온도에 의한 전해 콘덴서의 열화를 방지하기 위해 -10~30°C 사이의 온도에서 보관하십시오.
- 제품이 눈이나 비, 안개, 먼지에 노출되지 않도록 하십시오.

- 습기 등의 침입을 방지하기 위해 제품을 잘 포장하십시오. 포장 내에 건조제(실리카겔)
 등을 넣어 포장 내부의 상대 습도를 70% 이하로 유지하십시오.
- 습기나 먼지가 많은 환경에서 방치되는 경우(건설 현장 등의 장치나 제어반에 사용되는 경우) 제품을 분리하여 제품 동작에 적합한 환경에서 보관하십시오.

10.2.2 제품의 올바른 폐기

제품을 폐기할 때에는 일반 산업 폐기물로 분류하십시오. 제품에는 재활용 가능한 원자재가 들어 있습니다. 에너지와 자원을 보존하기 위해 사용하지 않는 제품은 재활용해야 합니다. 포장재와 모든 금속 부분은 재활용이 가능합니다. 플라스틱 부분도 재활용이 가능하지만, 지역 규정에 따라 관리된 환경에서 소각할 수 있습니다.

① 주의

Г

장기간 전류가 통하지 않는 상태가 지속되는 경우 전해 콘덴서의 특성이 열화됩니다. 전해 콘덴서의 열화를 방지하려면 1 년에 1 회 제품의 전원을 켜서 30~60 분 동안 전류가 통하게 하십시오. 이때 출력 측의 배선 및 운전은 실시하지 마십시오.

11 기술 사양

11.1 입력 및 출력 규격

3 상 200V 급(0.75~3.7kW)

모델명 H100 XXXX-2		0008	0015	0022	0037		
적용 모터 HP kW		HP	1.0	1.0 2.0 3.0 5.0		5.0	
		kW	0.75	0.75 1.5		3.7	
	정격 용량(kVA)		1.9	3.0	4.5	6.1	
TJ 74	정격	3상	5	8	12	16	
성석 추려	전류(A)	단상	2.9	4.4	6.4	8.4	
놀리 -	출력 주파수		0–400 Hz				
	출력 전압(V)		3-Phase 200–240 V				
	사용	3상	3상 200–240 VAC (-15%–+10%)				
74 74	전압(V)	단상	단상 240 \	/AC (-5%+1	0%)		
성격 이러	입력	3상	50–60 Hz (±5%)			
입덕	주파수	단상	50–60 Hz (±5%)			
	정격 전류	정격 전류(A)		8.4	12.9	17.5	
중량(kg)			3.3	3.3	3.3	3.3	

٦

• 모터 용량은 4극 표준 모터를 사용할 때 기준입니다.

• 200V급은 220V, 400V급은 440V 기준입니다.

• 정격 출력 전류는 캐리어 주파수(CON-04) 설정에 따라 제한이 있습니다.

3 상 200V 급(5.5~18.5kW)

Г

모델명	H100 XXX	X–2	0055	0075	0110	0150	0185	
저요 ㅁㅌ	1	HP	7.5	7.5 10 15 20		25		
김중 포니		kW	5.5	7.5	11	15	18.5	
	정격 용량(kVA)		8.4	11.4	16.0	21.3	26.3	
정격 출력 -	정격	3상	22	30	42	56	69	
	전류(A)	단상	11	16	23	30	37	
	출력 주파수		0~400Hz					
	출력 전압(V)		3상 200~240V					
	사용	3상	3상 200~240VAC (-15%~+10%)					
저겨	전압(V)	단상	단상 240 \	/AC (-5%—+´	10%)			
이려	입력	3상	50–60 Hz (±5%)				
87	주파수	단상	50–60 Hz (±5%)				
	정격 전류((A)	23.7	32.7	46.4	62.3	77.2	
중량(kg)			3.3	3.3	3.3	4.6	7.1	

• 모터 용량은 4극 표준 모터를 사용할 때 기준입니다.

• 200V급은 220V, 400V급은 440V 기준입니다.

• 정격 출력 전류는 캐리어 주파수(CON-04) 설정에 따라 제한이 있습니다

3 상 400V 급(0.75~3.7kW)

모델명 H100 XXXX-4			8000	0015	0022	0037	
HP HP			1.0 2.0 3.0 5.0				
역중 포덕	작용 포너 kW		0.75	1.5	2.2	3.7	
	정격 용량(k	VA)	1.9	3.0	4.5	6.1	
	정격	3상	2.5	4	6	8	
정격 출력	전류(A)	단상	1.6	2.4	3.5	4.6	
	출력 주파수	:	0–400 Hz				
	출력 전압(V	<i>(</i>)	3상 380~480V				
	사용 3상		3상 380~480VAC(-15%~+10%)				
	전압(V)	단상	단상 480 VAC (-5%-+10%)				
정격 입력	입력	3상	50–60 Hz (±	:5%)			
	주파수	단상	50–60 Hz (±	:5%)			
	정격 전류(A	.)	2.4	4.2	6.5	8.7	
중량(kg)			3.3	3.3	3.3	3.3	

• 모터 용량은 4극 표준 모터를 사용할 때 기준입니다.

• 200V급은 220V, 400V급은 440V 기준입니다.

• 정격 출력 전류는 캐리어 주파수(CON-04) 설정에 따라 제한이 있습니다.

3 상 400V 급(5.5~22kW)

Г

모델명 H100 XXXX-4			0055	0075	0110	0150	0185	0220
저요 ㅁ티		HP	7.5	10	15	20	25	30
「		kW	5.5	7.5	11	15	18.5	22
	정격 용량(k	VA)	9.1	12.2	18.3	23.0	29.0	34.3
정격 출력	정격	3상	12	16	24	30	38	45
	전류(A)	단상	6.8	9.2	14	17	22	26
	출력 주파수		0~400Hz					
	출력 전압(V)		3상 380~480V					
	사용 3상		3상 380~480VAC(-15%~+10%)					
	전압(V)	단상	단상 480 VAC (-5%+10%)					
정격 입력	입력	3상	50–60 Hi	z (±5%)				
	주파수	단상	50–60 Hi	z (±5%)				
	정격 전류(A	()	12.2	17.5	26.5	33.4	42.5	50.7
중량(kg)			3.3	3.3	3.4	4.6	4.8	7.5

• 모터 용량은 4극 표준 모터를 사용할 때 기준입니다.

• 200V급은 220V, 400V급은 440V 기준입니다.

• 정격 출력 전류는 캐리어 주파수(CON-04) 설정에 따라 제한이 있습니다

3 상 400V 급(30.0~90.0kW)

모델명 H100 XXXX-4			0300	0370	0450	0550	0750	0900	
저요 ㅁ디			HP	40	50	60	75	100	125
「つ エゴ KW		kW	30	37	45	55	75	90	
	정격 용량(kVA)		46.5	57.1	69.4	82.0	108.2	128.8
정격 출력	정격	3상		61	75	91	107	142	169
	전류(A) 단성			36	39	47	55	73	86
	출력 주파수			0~400Hz					
	출력 전압(V)			3상 380~480V					
	사용 저야지지	3상		3상 380	3상 380~480VAC(-15%~+10%)				
	자용 전집(V)	단상		단상 480 VAC (-5%-+10%)					
정격 입력	이려 조피스	3상		5060 H	Hz (±5%)				
	입역 구피구	단상		50–60 H	Hz (±5%)				
	정격 전류(A)		69.1	69.3	84.6	100.1	133.6	160.0	
중량(kg)				7.5	26	35	35	43	43

3 상 400V 급(110.0~500.0kW)

모델명 H100 XXXX-4			1100	1320	1600	1850	2200	2500	3150	3550	4000	5000
적용 모터		HP	150	200	250	300	350	400	500	550	650	800
		kW	110	132	160	185	220	250	315	355	400	500
	정격 용량(kVA)		170	201	248	282	329	367	467	520	587	733
정격	정격 전류(A)		223	264	325	370	432	481	613	683	770	962
출력	출력 주파수		0~400Hz									
	출력 전압(V)		3상 380~500V									
정격 입력	사용 전압(V)		3상 380~500VAC(-15%~+10%)									
	입력 주파수		50 ~ 60Hz(±5%)									
	정격 전	류(A)	215.1	254.6	315.3	358.9	419.1	469.3	598.1	666.4	751.3	938.6

• 모터 용량은 4극 표준 모터를 사용할 때 기준이며, 3상 기준입니다.

• 200V급은 220V, 400V급은 440V 기준입니다.

• 정격 출력 전류는 캐리어 주파수(CON-04) 설정에 따라 제한이 있습니다.

11.2 제품 상세 사양

항목			설명					
제어	제어 방식		V/F 제어, 슬립 보상					
	조피스 서저 비렌드		디지털 지령: 0.01Hz					
	구매구 ,	걸싱 군얘중	아날로그 지령: 0.06Hz(60Hz 기준)					
	주파수 정도		최대 출력 주파수의 1%					
	V/F 패턴		리니어, 2승 저감, 사용자 V/F					
	고녀치 비랴		0.75~90kW : 정격 전류 120% 1분					
	파구야	-15	110~500kW : 정격 전류 110% 1분					
	토크 부:	스트	수동 토크 부스트, 자동 토크 부스트					
운전	운전 방식		키패드, 단자대, 통신 운전 중 선택					
	주파수 설정		아날로그 방식: -10~10V, 0~10V, 0~20mA					
			디지털 방식: 키패드, 펄스 트레인 입력					
			PID 제어	업-다운 운전				
			3-와이어(3-Wire) 운전	직류 제동				
			주파수 제한	주파수 점프				
			제 2 기능	슬립 보상				
	운전 기성		정뱡향/역방향 회전 금지	자동 재기동				
			상용 전환	자동 튜닝				
			속도 써치(Speed Search)	에너지 버퍼링 운전				
			파워 제동	플럭스 제동				
			누설 저감 운전	에너지 절약 운전				
	다기능		PNP(Source), NPN(Sink) 모드 중 선택					
	입력	단자(7점)	IN-65~71 코드의 파라미터 설정에 따라 다음과 같이 기능을					
		P1~P7	설정할 수 있음					
항목			설명					
----	----	------------------------	--	--	--	--		
			정방향 운전 리셋 비상 정지 다단속 주파수-상/중/하 정지 중 직류 제동 주파수 증가 3-와이어(3-Wire) 가/감속 중지 등 중 선택 MMC 인터락	역방향 운전 외부 트립 조그 운전 다단 가/감속-상/중/하 제 2 모터 선택 주파수 감소 아날로그 지령 주파수 고정 PID운전 중 일반 운전으로 전환 Pre Heat 펌프 클리닝 기능 RTC(타임 이벤트 기능)				
		펄스 트레인	0~32kHz, Low Level : 0~0.8V, High Level : 3.5~12V					
		다기능 오픈 컬렉터 단자		DC 26V, 50mA 이하				
	출력	고장 릴레이 단자	고장 출력 및 인버터 운전 상태 출력	N.O. : AC 250V, 2A, 이하, DC 30V, 3A 이하 N.C. : AC 250V, 1A, 이하, DC 30V, 1A 이하				
		다기능 릴레이 단자		AC 250V, 5A 이하, DC 30V, 5A 이하				
		아날로그 출력	0~12Vdc(0~20mA): 주파수, 출력 선택 가능	전류, 출력 전압, 직류 전압 등				
		펄스 트레인	신택 가능 최대 32kHz, 0~12V					

항목		설명					
			과전압 트립				
		과전류 트립	온도 센서 트립				
		외부 신호에 의한 트립	인버터 과열				
		암(ARM) 단락 전류 트립	옵션 트립				
		과열 트립	출력 결상 트립				
		입력 결상 트립	인버터 과부하 트립				
		지락 트립	팬 트립				
		모터 과열 트립	운전 중 저전압 트립				
	트립	IO 보드 연결 트립	저전압 트립				
		모터 없음 트립	아날로그 입력 에러				
보호		파라미터 쓰기 트립	모터 과부하 트립				
기능		비상 정지 트립	파이프 손상 트립				
		지령 상실 트립	키패드 지령 상실 트립				
		외부 메모리 에러	댐퍼 트립				
		CPU 와치독 트립	Level Detect 트립				
		모터 경부하 트립	전체 보조모터 고장 트립				
			펌프 클린 고장				
		지령 상실 트립 경보, 과부하 경보, 경부하 경보, 인버터 과부하					
	경보	경보, 팬 동작 경보, 제동 저항 제동률 경보, 커패시터 수명					
		경보, 펌프클린 경보, Fire Mode_경보, LDT 경보					
	수시 전저	8 ms 이하: 운전 계속 (정격 입력	ᅧ 전압, 정격 출력 이내일 것)				
		8 ms 이상: 자동 재기동 운전 기	<u>ь</u>				
	냉각 방식	강제 풍냉 구조					
	ㅂㅎ 구조	IP 20(기본), UL Open & Enclosed	Type 1(옵션)				
	<u> </u>	Conduit Option 장착 시 UL Enclo	osed Type 1 만족				
구조/		-10℃~50℃(40℃ 이상에서는 2.5	%/℃ 전류 Derating 됨. 50℃의				
사용	주위 온도	경우 정격 전류의 75% 운전 가	<u>(</u>)				
환경		얼음이나 성에 등이 없을 것					
	주위 습도	상대 습도 95% RH 이하(이슬 밎	현상 없을 것)				
	보관 온도	-20~65°C					
	주위 환경	실내에 부식성 가스, 인화성 가=	느, 기름 찌꺼기, 먼지 등이 없을				

Γ

항목		설명			
		것(Pollution Degree 2 Environment)			
	도자 그드	해발 1,000m(1,000m 이상부터 매 100m 상승 시 전압/출력전류			
	승객 고도	1% 씩 Derating 적용, 최대 4,000m)			
	진동	9.8m/sec²(1.0G) 이하			
	주위 기압	70~106kPa			

11.3 외형 치수(IP 20 Type)

0.75~30kW(3상)

Γ

37~90kW(3상)

110~185kW(3상)

220~500kW(3상)

단위: mm

	제품	W1	W2	W3	H1	H2	H3	D1	Α	В	Φ
	0008H100-2	160	137	-	232	216.5	10.5	181	5	5	-
	0015H100-2	160	137	-	232	216.5	10.5	181	5	5	-
	0022H100-2	160	137	-	232	216.5	10.5	181	5	5	-
3상	0037H100-2	160	137	-	232	216.5	10.5	181	5	5	-
	0055H100-2	160	137	-	232	216.5	10.5	181	5	5	-
2007급	0075H100-2	160	137	-	232	216.5	10.5	181	5	5	-
	0110H100-2	160	137	-	232	216.5	10.5	181	5	5	-
	0150H100-2	180	157	-	290	273.7	11.3	205.3	5	5	-
	0185H100-2	220	193.8	-	350	331	13	223.2	6	6	-
	0008H100-4	160	137	-	232	216.5	10.5	181	5	5	-
	0015H100-4	160	137	-	232	216.5	10.5	181	5	5	-
	0022H100-4	160	137	-	232	216.5	10.5	181	5	5	-
	0037H100-4	160	137	-	232	216.5	10.5	181	5	5	-
	0055H100-4	160	137	-	232	216.5	10.5	181	5	5	-
	0075H100-4	160	137	-	232	216.5	10.5	181	5	5	-
	0110H100-4	160	137	-	232	216.5	10.5	181	5	5	-
	0150H100-4	180	157	-	290	273.7	11.3	205.3	5	5	-
	0185H100-4	180	157	-	290	273.7	11.3	205.3	5	5	-
	0220H100-4	220	193.8	-	350	331	13	223.2	6	6	-
	0300H100-4	220	193.8	-	350	331	13	223.2	6	6	-
3상	0370H100-4	275	232	-	450	428.5	14	284	7	7	-
	0450H100-4	325	282	-	510	486.5	16	284	7	7	-
400V급	0550H100-4	325	282	-	510	486.5	16	284	7	7	-
	0750H100-4	325	275	-	550	524.5	16	309	9	9	-
	0900H100-4	325	275	-	550	524.5	16	309	9	9	-
	1100H100-4	300	200	240	240	706	688.5	9.5	386	9	9
	1320H100-4	300	200	240	240	706	688.5	9.5	386	9	9
	1600H100-4	380	300	300	300	705	685.5	9.5	396	9	9
	1850H100-4	380	300	300	300	705	685.5	9.5	396	9	9
	2200H100-4	426	320	-	-	922.3	895.5	15.5	440	11	11
	2500H100-4	426	320	-	-	922.3	895.5	15.5	440	11	11
	3150H100-4	600	420	-	-	1000	972	15	500	14	14
	3550H100-4	600	420	-	-	1000	972	15	500	14	14
	4000H100-4	600	420	-	-	1000	972	15	500	14	14
	5000H100-4	776	500	-	-	1054	1021	20	500	14	14

Γ

단위:inches

	제품	W1	W2	W3	H1	H2	H3	D1	Α	В	Φ
	0008H100-2	6.30	5.39		9.13	8.52	0.41	7.13	0.20	0.20	-
	0015H100-2	6.30	5.39		9.13	8.52	0.41	7.13	0.20	0.20	-
	0022H100-2	6.30	5.39		9.13	8.52	0.41	7.13	0.20	0.20	-
3상	0037H100-2	6.30	5.39		9.13	8.52	0.41	7.13	0.20	0.20	-
200V	0055H100-2	6.30	5.39		9.13	8.52	0.41	7.13	0.20	0.20	-
급	0075H100-2	6.30	5.39		9.13	8.52	0.41	7.13	0.20	0.20	-
	0110H100-2	6.30	5.39		9.13	8.52	0.41	7.13	0.20	0.20	-
	0150H100-2	7.09	6.18		11.42	10.78	0.45	8.08	0.20	0.20	-
	0185H100-2	8.66	7.63		13.78	13.03	0.51	8.79	0.24	0.24	-
	0008H100-4	6.30	5.39		9.13	8.52	0.41	7.13	0.20	0.20	-
	0015H100-4	6.30	5.39		9.13	8.52	0.41	7.13	0.20	0.20	-
	0022H100-4	6.30	5.39		9.13	8.52	0.41	7.13	0.20	0.20	-
	0037H100-4	6.30	5.39		9.13	8.52	0.41	7.13	0.20	0.20	-
	0055H100-4	6.30	5.39		9.13	8.52	0.41	7.13	0.20	0.20	-
	0075H100-4	6.30	5.39		9.13	8.52	0.41	7.13	0.20	0.20	-
	0110H100-4	6.30	5.39		9.13	8.52	0.41	7.13	0.20	0.20	-
	0150H100-4	7.09	6.18		11.42	10.78	0.45	8.08	0.20	0.20	-
	0185H100-4	7.09	6.18		11.42	10.78	0.45	8.08	0.20	0.20	-
	0220H100-4	8.66	7.63		13.78	13.03	0.51	8.79	0.24	0.24	-
	0300H100-4	8.66	7.63		13.78	13.03	0.51	8.79	0.24	0.24	-
3상	0370H100-4	10.83	9.13		17.72	168.70	0.55	11.18	0.28	0.28	-
400V	0450H100-4	12.80	11.10		20.08	191.54	0.63	11.18	0.28	0.28	-
급	0550H100-4	12.80	11.10		20.08	191.54	0.63	11.18	0.28	0.28	-
	0750H100-4	12.80	10.83		21.65	206.50	0.63	12.17	0.35	0.35	-
	0900H100-4	12.80	10.83		21.65	206.50	0.63	12.17	0.35	0.35	-
	1100H100-4	11.81	7.87	9.45	9.45	27.80	27.11	0.37	15.20	0.35	0.35
	1320H100-4	11.81	7.87	9.45	9.45	27.80	27.11	0.37	15.20	0.35	0.35
	1600H100-4	14.96	11.81	11.81	-	27.76	26.99	0.37	15.59	0.35	0.35
	1850H100-4	14.96	11.81	11.81	-	27.76	26.99	0.37	15.59	0.35	0.35
	2200H100-4	17.32	12.60		-	36.31	35.26	0.61	17.32	0.43	0.43
	2500H100-4	17.32	12.60		-	36.31	35.26	0.61	17.32	0.43	0.43
	3150H100-4	23.62	16.54		-	39.37	38.27	0.59	19.69	0.55	0.55
	3550H100-4	23.62	16.54		-	39.37	38.27	0.59	19.69	0.55	0.55
	4000H100-4	23.62	16.54		-	39.37	38.27	0.59	19.69	0.55	0.55
	5000H100-4	30.55	19.69		-	41.50	40.20	0.79	19.69	0.55	0.55

11.4 주변 기기

Γ

배선용 차단기/누전 차단기/전자 접촉기 모델명(LS EIECTRIC)

			배선용	차단기		누전 차단기		전자 접촉기	
제품(k\	N)	권장(비	UL품)	권장(L	IL품)	권장(비	UL품)	권장(UL품)
		형명	전류[A]	형명	전류량	형명	전류량	형명	전류량
	0.75		15		8		15	MC-9a	11
	1.5		15		13	FDC2 2-	15	MC-18a	18
	2.2	ABS33C	30	MMS32H	22	EBS33C	30	MC-32a	32
3상	3.7		30		26		30	MC-32a	32
200V	5.5	ABS53c	50		40	EBS53c	50	MC-50a	55
급	7.5	ABS63c	60	MMS63H	50	EBS63c	60	MC-65a	65
	11		100		75	EB\$1020	100	MC-85a	85
	15	ABS103c	100	MMS100H	100	EB2103C	100	MC-130a	130
	18.5		100		100	EBS103c	100	MC-130a	130
	0.75		10	-	40		10	MC-6a	9
	1.5	ABS33c	10		40	FROM	10	MC-6a	9
	2.2		15		40	EB333C	15	MC-9a	11
	3.7		15		40		15	MC-12a	13
	5.5		30		40	50000	30	MC-22a	22
	7.5		30	UTS150	40	EDS33C	30	MC-32a	32
3상	11	ABS53c	50		40	FREEze	50	MC FOR	50
400V	15	ABS63c	60		50	EBSSSC	50	NIC-50a	50
급	18.5	ABS103c	100		70		100	MC 950	85
	22	ABS103c	100		80	EBS103c	100	1010-002	85
	30	ABS103c	100		100		100	MC-100a	100
	37	ABS203c	175		150		200		150
	45	ABS203c	175	UTS250	150	EBS203c	200	MC-150a	150
	55	ABS203c	175		150	1	200		150
-	75	ABS203c	225	UTS250	225	EBS203c	225	MC-225a	225

LSELECTRIC 529

제품(kW)			배선용	차단기		누전 차단기		전자 접촉기	
		권장(비UL품)		권장(UL품)		권장(비UL품)		권장(UL품)	
		형명	전류[A]	형명	전류량	형명	전류량	형명	전류량
	90	ABS203c	250		250		250	MC-265a	265
	110	ABS603c	500		500		500	MC 400-	400
	132	ABS603c	600	UTS600	600	EBS603c	630	MO 000-	400
	160	ABS603c	630		600		630		630
	185	ABS803c	800		800	550000	800	MC-630a	630
	220	ABS803c	800	UTS800	800	EB2803C	800	NO 000-	800
	250	ABS1003b	1000		800	EBS1003b	1000	MC-800a	800
	315	ABS1203b	1200	1.000	1200		1200	NO 4000	1260
	355	ABS1203b	1200	0151200	1200	EBS1203b	1200	MC-1260a	1260
	400								
	500								

IEC 60439-1 의 규정에 따라, 전원 입력단에서 허용되는 규약 단락 전류는 100kA 입니다. LSLV-H100 는 제품의 최대 정격 전압에서 정격 100kA 대칭 전류를 견딜 수 있도록 설계되었으며, 선택된 MCCB 에 의해 결정됩니다. 아래에 권고되는 MCCB 에 대한 RMS 대칭 전류 테이블을 참조하십시오.

Maximum allowed prospective short-circuit current at the input power connection is defined in IEC 60439-1 as 100 kA. LSLV-H100 is suitable for use in a circuit capable of delivering not more than 100kA RMS at the drive's maximum rated voltage, depending on the selected MCCB. RMS symmetrical amperes for recommended MCCB are the following table.

Working Voltage	UTE100 (E/N)		UTS150 (N/H/L)		UTS250 (N/H/L)		UTS400 (N/H/L)	
240V(50/60Hz)	50/65k/	A	65/100/150kA		65/100/150kA		65/100/150kA	
480V(50/60Hz)	25/35k/	A	35/	65/100kA	35/65/100kA		35/65/100kA	
Working Voltage	ABS33c	ABS	653c	ABS63c	ABS103c	ABS	203c	ABS403c
240V(50/60Hz)	30kA	35	kA	35kA	85kA	85	kA	75kA

480V(50/60Hz)	7.5kA	10kA	10kA	26kA	26kA	35kA

11.5 퓨즈/리액터 규격

Γ

ᆒᆓᇪᇒ		AC 입력 퓨즈		교류 리액터		직류 리액터		
세눔(KVV)		전류(A)	전압(V)	인덕턴스(mH)	전류(A)	인덕턴스(mH)	전류(A)	
	0.75	10		2.02	5	4.04	5	
	1.5	10		1.26	8	2.53	8	
	2.2	15		0.78	12	1.68	12	
2사	3.7	20		0.59	16	1.26	16	
30 000V7	5.5	50		0.43	24	0.93	25	
2007급	7.5	63		0.31	33	0.73	32	
	11	80		0.22	46	0.53	50	
	15	100		0.16	62	0.32	62	
	18.5	125		0.13	77	0.29	80	
	0.75	10		8.09	2.5	16.17	3	
	1.5	10		5.05	4	10.11	4	
	2.2	15		3.37	6	6.74	6	
	3.7	20		2.25	9	5.05	8	
	5.5	32	600[V]	1.56	13	3.56	13	
	7.5	35		1.16	17	2.53	18	
	11	50		0.76	27	1.64	26	
	15	63		0.61	33	1.42	33	
3상	18.5	70		0.48	43	0.98	42	
400V급	22	100		0.40	51	0.88	50	
	30	105		0.29	69	0.59	68	
	37	120		0.29	69			
	45	160		0.24	85			
	55	200		0.20	100			
	75	250		0.15	134	Built I	n	
	90	350		0.13	160			
	110	350		0.1	217			
	132	400		0.08	257			

제품(kW)		AC 입력 퓨즈		교류 리액터		직류 리액터		
		전류(A)	전압(V)	인덕턴스(mH)	전류(A)	인덕턴스(mH)	전류(A)	
	160	450		0.07	318			
	185	550		0.06	362			
	220	630		0.05	423			
	250	700		0.05	474			
	315	800		0.04	604			
	355	1000		0.03	673			
	400	1100		0.03	759			
	500	1250		0.03	948			

① 주의

반드시 UL 표준에서 정한 Class H(또는 RK5) 규격의 입력 퓨즈 및 UL 표준을 준수하는 차단기를 사용하십시오.

① Caution

Use Class H or RK5 UL Listed Input Fuse and UL Listed Breaker Only. See the table above For the Voltage and Current rating of the fuse and the breaker.

Attention

Utiliser UNIQUEMENT des fusibles d'entrée homologués de Classe H ou RK5 UL et des disjoncteurs UL. Se reporter au tableau ci-dessus pour la tension et le courant nominal des fusibless et des disjoncteurs.

11.6 단자 나사 규격

입출력 단자 나사 규격

제품(kW)		단자 나사 사이즈	나사 토크(Kgf cm/Nm)		
0.75					
3상	1.5	N44	12.2 ~ 14.3 / 1.2 ~ 1.4		
200 V급	2.2	1714			
	3.7				

제품(kW)		단자 나사 사이즈	나사 토크(Kgf cm/Nm)
	5.5		
	7.5		
	11		
	15	MG	20.4 24.5 (2.0 2.4
	18.5	GIVI	20.4 ~ 24.5 / 2.0 ~ 2.4
	0.75		
	1.5		
	2.2		
	3.7	M4	12.2 ~ 14.3 / 1.2 ~ 1.4
	5.5		
	7.5		
	11		
	15		
	18.5	M5	20.4 ~ 24.5 / 2.0 ~ 2.4
	22		
	30		
0.4F	37		
33 400 Vユ	45		56.12 ~ 67.3 / 5.5 ~ 6.6
400 V L	55	M8	
	75		
	90		
	110	M10	
	132	MITO	09.7 ~ 122.07 0.0 ~ 11.90
	160		
	185	M10	102 / 015 0 / 17 07 01 07
	220	1 MT2	182.4 ~ 215.0 / 17.87 ~ 21.07
	250		
	315		
	355	M8 X 2 M12 X 1	61.2 ~ 91.8 / 6 ~ 9 182.4 ~ 215.0 / 17.87 ~ 21.07
	400		102.7 - 210.07 11.01 ~ 21.01

Г

제품(kW)		단자 나사 사이즈	나사 토크(Kgf cm/Nm)
	500	M10 X 2 M16 X 1	89.7 ~ 122.0 / 8.8 ~ 11.96 490.9 ~ 511.0 / 48.05 ~ 50.11

제어 회로 단자 나사 규격

단자	단자 나사 사이즈	나사 토크(Kgf·cm/Nm)
P1~P7/CM/VR/V1/l2/AO/Q1/ EG/24/TI/TO/SA,SB,SC/S+,S -,SG	M2	2.2~2.5/0.22~0.25
A1/B1/C1	M2.6	4.0/0.4

① 주의

단자대 나사는 규정 토크에 따라 조이십시오. 나사가 단단하게 조여지지 않으면 단락 및 제품 고장이 발생할 수 있습니다. 전원 단자대 배선에는 600V,90℃ 규격의 동 전선을, 제어 단자대 배선에는 300V,75℃ 규격의 동 전선을 사용하십시오.

① Caution

Apply rated torques to the terminal screws. Loose screws may cause short circuits and malfunctions. Tightening the screw too much may damage the terminals and cause short circuits and malfuctions. Use copper wires only with 600V, 90°C rating for the power terminal wiring, and 300V, 75°C rating for the control terminal wiring.

Attention

Appliquer des couples de marche aux vis des bornes. Des vis desserrées peuvent provoquer des courts-circuits et des dysfonctionnements. Ne pas trop serrer la vis, car cela risque d'endommager les bornes et de provoquer des courts-circuits et des dysfonctionnements. Utiliser uniquement des fils de cuivre avec une valeur nominale de 600 V, 90 °C pour le câblage de la borne d'alimentation, et une valeur nominale de 300 V, 75 °C pour le câblage de la borne de commande.

11.7 제동 UNIT 및 제동저항 규격

11.7.1 제동 UNIT 종류

UL 형식	전압	적용 모터 용량	제동 유닛	외형 및 단자배열	
		30 ~ 37 kW	SV370DBU-2U		
	200V 급	45 ~ 55 kW	SV550DBU-2U		
		75 kW	SV370DBU-2U, 2Set		
		30 ~ 37 kW	SV370DBU-4U		
UL type		45 ~ 55 kW	SV550DBU-4U	그룹 1. 참조	
	4001/ 그	75 kW	SV750DBU-4U		
	400V 급	90 kW	SV550DBU-4U, 2Set		
		110~132kW	SV750DBU-4U, 2Set	L	
		160kW	SV750DBU-4U, 3Set		
	400V 급	45 ~ 55 kW, 75kW	SV075DB-4	그룹 2. 참조	
		185~220kW	SV2200DB-4 ^{주1)}	ᄀᄅ ゥ 차ㅈ	
		280~375Kw	SV2200DB-4, 2Set	그둡 3. 삼소	
	2001/7		20 27 144	LSLV0370DBU-2LN	그룹 4. 참조
		30 ~ 37 KVV	LSLV0370DBU-2HN	그룹 5. 참조	
비 UL type	2007 ц	45 ~ 55 kW, 75 kW	LSLV0750DBU-2LN	그룹 4. 참조	
			LSLV0750DBU-2HN	그룹 5. 참조	
		30 - 37 kW	LSLV0370DBU-4LN	그룹 4 . 참조	
	400V 급	50 ~ 57 KW	LSLV0370DBU-4HN	그룹 5. 참조	
		45 ~ 55 kW, 75kW	LSLV0750DBU-4LN	그룹 4 . 참조	
		4	45 ~ 55 kW, 75kW	LSLV0750DBU-4HN	그룹 5. 참조

	90 kW	LSLV0900DBU-4HN	
	110~132kW	LSLV1320DBU-4HN	
	160kW	LSLV1600DBU-4HN	
	185~220kW	LSLV2200DBU-4HN	
	280~375Kw	LSLV2200DBU-4HN, 2Set	
	400~500kW	LSLV2200DBU-4HN, 3Set	

* 표에 나와있는 제동 185kW 이상의 용량은 고객상담센터(1544-2080)로 문의하시기 바랍니다.

참고

- H100 18.5kW(200V) 이하 및 30kW(400V) 이하 제품은 제동 unit 이 기본으로 내장되어 있으므로 별치형 제동 unit 을 사용할 필요가 없습니다.
- 위 표의 추천 제동 UNIT 을 사용하고자 할 경우 변경사항이 있을 수 있으니 반드시 해당 제동 UNIT 사용설명서를 참고하시기 바랍니다.
- 제동 UNIT Type A 에 사용할 제동저항기의 저항값은 뒤의 제동저항기 표 또는 각 제동유닛의 사용설명서를 참고하시고, Type B 또는 C 에 사용할 제동저항기는 각 제동유닛의 사용설명서를 참고하시기 바랍니다.

11.7.2 제동 UNIT 단자 배열

그룹 1:	Р	N	G	B1	B2
그룹 2:	G	N	B2	P/B1	1

단자명	기능
G	접지 단자
B2	제동저항기의 B2 와 연결하기 위한 단자
B1	제동저항기의 B1 과 연결하기 위한 단자
N	인버터 단자 N 과 연결하기 위한 단자
Р	인버터 단자 P1과 연결하기 위한 단자

220kW DB 단자대

단자명	기능
Р	인버터 단자 P와 연결하기 위한 단자
B1	제동저항기의 B1 과 연결하기 위한 단자
Ν	인버터 단자 N 과 연결하기 위한 단자
B2	제동저항기의 B2와 연결하기 위한 단자
G	접지 단자

그룹 5:

Γ

단자명	단자기호	내용	
P(+)	지르저안 여격	이버터이 DC 저워과 여격하여 사용	
N(-)			
B1	이브저하 여겨	외부 저항과 연결하여 사용.	
B2	지구지 6 년일		
N.C	사용 안함	사용하지 않는 단자입니다.	
E	접지 연결	외부 접지에 연결하여 사용.	

그룹 6:

- A Frame(37kW, 75kW-4)
- P(+) N(-) B1 B2 N.C E

B /C Frame(75kW-2, 90~220kW)

단자명	단자기호	내용	
P(+)	DC Rus Link	Inverter 이 DC Buc 아 여겨하여 사용	
N(-)		Inventer 의 DC bus 되 단일이어 지승.	
B1	Extornal Posistor Link	이브 저하과 여겨하여 사요	
B2		지수 지정과 한물이어 지승.	
E	Earth Ground Link	외부 접지에 연결하여 사용.	

٦

참고

해당 제동 UNIT에 사용하기 위해 제동 저항 선정 시 반드시 제동 UNIT 사용설명서를 참조하여 주시기 바랍니다

11.7.3 제동(DB) 유닛 및 제동저항 기본 결선도

제동저항 단자	단자 설명
B1,B2	결선도를 참조하여 올바르게 배선하여 주십시오.

대용량 제품의 경우, 사용 환경에 따라 제동 유닛을 2set 이상 결선하는 경우가 있습니다. 제동 유닛을 2set 이상 결선하는 경우 DB Unit 매뉴얼을 참고하시기 바랍니다.

11.7.4 제동 유닛 외형도

-그룹 1

Г

- 그룹 3

**	
	15.7 730 5
	101 148.5 2
NEWNERNER	

**	
	88
	E

-그룹 4

Γ

사용 전압	용량	제품크기 (mm)				취부위치 (mm)		무게	취부홀 크기
(V)	(kW)	W	н	H2	D	W1	H1	(kg)	(þ)
	15) 227. 4	192	76.4	125	215.4	1.50	M4
220	22	140						1.55	
	37							1.57	
	75							1.84	
	15							1.53	
140	22							1.55	
440	37							1.56	
	75							1.85	

프레임	사용 전압	용량	사용 율	제품크기 (mm)			취부위치 (mm)		무게	취부 홀 크기	
			(%ED)	W	Н	H2	D	W1	H1	(Kg)	(φ)
A	220 [V]	37 [kW]	50			100		16		3.77	
Frame	440	37 [kW]	50	200) 219	219 190		0	208.5	3.84	
	[V]	75 [kW]	50							3.98	
	220	75 [kW]	50				165.2	17 5	329.5	8.26	
В	[V]	90 [kW]	50	215	240					8.48	M6
Frame	440	90 [kW]	50	215	540	511				8.30	
	[V]	132[kW]	50							8.40	
С	440	160[kW]	50	240	380	30 351		20	9.40		
Frame	[V]	220[kW]	50	240				0	369.5	9.70	

11.7.5 표시기능 설명

Г

제동(DB) 저항을 제동(DB) 유닛의 B1,B2 단자에 결선합니다.

제동유닛에는 3 개의 발광 표시장치 (LED)가 있습니다. 가운데 적색 LED 는 주 전원이 인가 되었음을 표시하고 오른쪽의 녹색 LED 는 제동 동작 중임을 표시합니다. 왼쪽의 녹색 LED 는 Over Heat Trip 상태임을 표시합니다.

표시 명칭	기능설명
POWER (적색 LED)	제동유닛에 주 전원이 인가되면 POWER LED 가 점등 됩니다. 일반적으로 제동유닛은 인버터에 결선되어 있기 때문에 인버터 입력 주 전원을 인가하면 제동유닛의 POWER LED 가 점등 됩니다.
RUN (녹색 LED)	전동기 회생 에너지에 의해 제동유닛이 정상적인 TURN ON 동작을 하는 동안 RUN LED 가 점멸 합니다.
OHT (녹색 LED)	제동 동작중 제동유닛 히트싱크(또는 방열판)가 과열되어 설정치를 초과하면 과열 보호 기능이 동작하여 제동유닛의 TURN ON 신호를 차단하고 OHT LED 를 점등 시킵니다.

11.7.6 제동 저항규격

85	요랴 제도			토크 100%		토크 150%			
68 (kW)		세종 으니	저항	용량 [W]	Wattage	Resistor	저항	용량 [W]	
			(Ω)	(%ED=5%)	[¥¥] (%ED=10%)	(Ω)	(Ω)	(%ED=5%)	
	0.75	-	200	100	200	150	150	300	
	1.5	-	100	200	400	60	300	600	
	2.2	-	60	300	600	50	400	800	
3-	3.7	-	40	500	1000	33	600	1200	
Phase	5.5	-	33	600	1200	20	800	1600	
200 V	7.5	-	20	800	1600	15	1200	2400	
	11	-	15	1200	2400	10	2400	4800	
	15	-	10	2400	4800	8	2400	4800	
	18.5	-	8	2400	4800	6	2600	5200	

0 =	F	ᆔᄃ		토크 100%		토크 150%			
승은 생각	5	- 세송 - 이니	저항	용량 [W]	Wattage	Resistor	저항	용량 [W]	
(KV)	')	ㅠス	(Ω)	(%ED=5%)	[W] (%ED=10%)	(Ω)	(Ω)	(%ED=5%)	
	0.75	-	900	100	200	600	150	300	
	1.5	-	450	200	400	300	300	600	
	2.2	-	300	300	600	200	400	800	
	3.7	-	200	400	800	130	600	1200	
	5.5	-	120	700	1400	85	1000	2000	
	7.5	-	90	1000	2000	60	1200	2400	
	11	-	60	1200	2400	40	2000	4000	
	15		45	2000	4000	32	2400	4800	
	18.5	-	35	2400	4800	20	3600	7200	
	22	-	30	2400	4800	20	3600	7200	
	30	-	20	3600	7200	16	5000	10000	
		DBU-U	16.9	3200	6400	-	-	-	
	37	DBH	16.9	3200	6400	12	5000	10000	
		LSLV-DB	16.9	3200	6400	12	5000	10000	
3- Dhana		DBU-U	11.4	4800	9600	-	-	-	
400 V	45	DBH	11.4	4800	9600	10	6400	12800	
		LSLV-DB	11.4	4800	9600	10	6400	12800	
		DBU-U	11.4	4800	9600	-	-	-	
	55	DBH	11.4	4800	9600	8.4	7200	14400	
		LSLV-DB	11.4	4800	9600	8.4	7200	14400	
		DBU-U	8.4	6400	12800	-	-	-	
	75	DBH	8.4	6400	12800	6	10000	20000	
		DB	8.4	6400	12800	6	10000	20000	
	90	LSLV-DB	6	10000	20000	5	13000	26000	
	110	LSLV-DB	5	13000	26000	4	16000	32000	
	132	LSLV-DB	4	16000	32000	3.4	20000	40000	
	160	LSLV-DB	3.4	20000	40000	2.8	24000	48000	
	185	LSLV-DB	2.8	24000	48000	2.4	26000	52000	
	220	LSLV-DB	2.4	26000	52000	2	30000	60000	
	250 132kW DB Unit and Resistor * 2 Set (Parallel)								

용량 (kW)		제도		토크 100%		토크 150%			
		세이 유닛	저항	용량 [W]	Wattage	Resistor	저항	용량 [W]	
(,		(Ω)	(%ED=5%)	[♥♥] (%ED=10%)	(Ω)	(Ω)	(%ED=5%)	
	315	160kW DB Unit and Resistor * 2 Set (Parallel)							
	355	185kW D	5kW DB Unit and Resistor * 2 Set (Parallel)						
	400	220kW D	B Unit and R	esistor * 2 S	et (Parallel)				
	500	185kW D	B Unit and R	esistor * 3 S	et (Parallel)				

참고

Г

- H100 18.5kW(200V) 이하 및 30kW(400V) 이하 제품은 제동 unit이 기본으로 내장되어 있으므로 별치형 제동 unit을 사용할 필요가 없습니다.
- 위의 표에 나와있는 제동저항 값/와트/제동토크/사용률은 Type A의 제동유닛을 사용할 때에만 유효한 값입니다. 제동유닛 사용시 적용할 제동저항 스펙의 자세한 내용은 각 제동유닛 사용설명서를 참조하십시오.
- Type B,C 의 경우에는 반드시 각 제동유닛의 사용설명서에 나와있는 제동저항 값, 와트, 제동토크, 사용률을 사용하십시오.
- 사용 기준에서 사용율(%ED)을 2배로 늘리면 별치형 저항기의 정격 와트를 두 배로 해야 합니다

11.8 인버터 연속 정격 전류 디레이팅

캐리어 주파수

캐리어 주파수에 따라 인버터의 연속 정격 전류가 제한됩니다. 다음 그래프를 참조하십시오. <200[V] 0.75[kW]~18.5[kW], 400[V] 0.75~30[kW]까지의 전류 Derating 률>

٦

<400[V] 37~500[kW]까지의 전류 Derating률>

		200V	400V								
항목	단위	5.5~ 18.5kW	5.5~ 18.5kW	22~ 30kW	37~ 55kW	75~ 90kW	110~ 355kW	400kW	500kW		
fs,def	kHz	3	3	3	3	3	2	1.5	1.5		
fs,c	kHz	8	8	8	-	-	-	2	4		
fs,max	kHz	15	15	15	10	7	5	4	4		

		200V	400V								
항목	단위	5.5~ 18.5kW	5.5~ 18.5kW	22~ 30kW	37~ 55kW	75~ 90kW	110~ 355kW	400kW	500kW		
DR1 %	%	70	65	65	-	-	-	95	92		
DR2 %	%	60	55	50	60	55	76	75	65		

*fs,def: 연속 운전 가능한 인버터 스위칭 주파수

fs,c: 1 차 전류 Derating 이 완료 되는 지점의 인버터 스위칭 주파수 ffs.max : 인버터 설정 가능한 최대 인버터 스위칭 주파수(2 차 전류 Derating 되는 지점)

입력 전압

Г

입력 전압에 따라 인버터의 연속 정격 전류가 제한됩니다. 다음 그래프를 참조하십시오.

주위 온도/설치 방법

주위 온도와 설치 방법에 따라 인버터의 연속 정격 전류가 제한됩니다. 다음 그래프를 참조하십시오. 주위 온도 40℃ 이상에서는 2.5%/℃ 전류가 Derating 되며, 50℃ 경우 정격 전류의 75% 이하로 운전해야 합니다.

12 고효율 제품 관련 정보

12.1 "고효율 기자재" 마크 인증 제품

"고효율 기자재"는 지정 시험 기관에서 측정한 에너지 소비 효율 및 품질 시험 결과 전 항목을 만족하고, 에너지 관리 공단에서 고효율 기자재로 인증받은 제품입니다. 저희 LSLV-H100 시리즈는 에너지 관리 공단으로부터 고효율 기자재 마크 사용 승인을 받은 제품으로, 유도 전동기의 소요 전력 및 전기 사용량을 절감하기 위하여 부하량에 적합 하도록 주파수 및 전압을 가변하여 전동기 속도를 조정할 수 있는 인버터를 말합니다. 운전 효율을 향상시키기 위하여 가감속 패턴 등이 한국 전력에서 정한 규격에 만족하는 인버터를 말합니다. 고효율 인버터는 220kW 이하까지만 규격 취득이 가능함에 따라 H100 제품은 5.5~220kW 까지 제공합니다.

12.2 입력 및 출력 규격

H100 5.5~90kW 제품은 기존 제품과 동일한 규격으로 9.1 절을 참고해 주시기 바랍니다. 3 상 400V 급 (110.0~220.0kW)

모델명 H100 XXXX-4			1100	1320	1600	1850	2200			
저요 ㅁ디	미티	HP	150	200	250	300	350			
48.	포덕	kW	110	132	160	185	220			
	정격 용량(kVA)		170	201	248	282	329			
정격	정격 전류(A)		204.4	242.0	297.9	339.2	396.0			
출력	출력 주파수		0~400Hz							
	출력 전	압(V)	3 상 380~500V							
저거	사용 전	압(V)	3 상 380~500VAC(-15%~+10%)							
이려	입력 주	파수	50 ~ 60Hz(±5%)							
비닉	정격 전	류(A)	197.2	233.4	289.0	329.0	384.2			
중량(kg)			55.8	55.8	74.7	74.7	120.0			

12.3 고효율 LSLV-H100 제품 형명

Г

13 단상 입력 전원 적용

13.1 들어가기

LSLV-H100 시리즈 인버터는 3상 표준형 인버터로 단상 입력을 사용하는 경우 여러 가지 제약 조건이 고려되어야 합니다. LSLV-H100 인버터는 PWM 방식의 6 펄스 다이오드 정류기를 사용합니다. 60Hz 3상 입력 사용 시 6 펄스 정류는 결과적으로 360Hz DC 리플을 발생시킵니다. 그러나, 단상 전원 입력 시에는 DC 리플 이 120Hz 가 되며 인버터 DC Link 회로들은 동일한 파워를 전달하기 위해 더 높은 스트레스를 받게 됩니다. 또한, 입력 전류 및 고조파는 삼상 입력 일 때 보다 증가하게 됩니다.단상 입력시에는 90%이상의 입력 전류 THD 가 발생 될 수 있습니다.(3 상에 경우 약 40%) 그러므로, 단상 입력 사용 시에는 입력 및 DC Link 소자에 과도한 스트레스를 피하기 위해 3 상 인버터 정격 파워가 디레이팅 되어야 합니다.

Figure-1 Typical Three-Phase Configuration

Figure-2 Typical Single-Phase Configuration

13.2 Power(HP), 입력 전류, 출력 전류

Г

단상 입력 사용 시 DC 전압 및 전류 리플이 증가하기 때문에 전류 및 파워는 디레이팅 되어야 합니다. 또한, 다이오드 정류기 2상을 통해 흐르는 전류는 약 2배가 되기 때문에 입력부 소자 소손이 발생할 수 있어 출력 전류 디레이팅을 필요합니다.

입력 전류 고조파 왜곡은 삼상 입력 공급 때보다 그 이상 증가되며 결과적으로 전체 입력 역률을 낮게 만들게 됩니다. 리액터를 장착하지 않은 경우 단상 입력 시 입력전류 왜곡은 100%가 넘을 수 있습니다. 그렇기 때문에 리액터는 항상 장착되어야 합니다. 단상 입력 사용 시 Drive 의 삼성 정격 기준으로 선정 된 모터를 사용하는 경우 성능 저하 및 제품 trip 등이 발생 할 수 있습니다. 그렇기 때문에 단상 입력 사용 시에는 모터 정격 전류 보다 큰 단상 전류 정격의 Drive 용량을 선정해야 합니다.

13.3 입력 주파수, 전압 허용 범위

단상 입력 AC 전압은 240/480Vac -5% ~ +10% 이내 범위에 들어와야 합니다. 일반 3상 drive 제품의 입력 전압 허용 범위는 -15% ~ +10% 입니다. 그러므로, 단상 입력 사용 시에는 입력 전압 허용범위 -5% ~ +10%이내로 반드시 사용 바랍니다.

단상 입력 시 DC link 평균 전압은 동일한 삼상 입력 대비 작습니다. 그러므로, 최대 출력 전압(모터 전압)이 낮게 출력 됩니다. 최소 입력 전압은 240V 모델의 경우 228Vac, 480V 모델에 경우 456V 이상이 되어야 합니다. 다시 말해 기저 주파수에서(full power) 최대 모터 토크를 발생시켜야 하는 경우 적절한 출력 전압이 유지 될 수 있도록 엄격한 입력 전압 유지가 필요합니다. 낮은 속도(낮은 파워)에서 모터를 동작 시키거나 입력 전압 정격보다 낮은 기저 전압을 가지는 모터를 사용할 경우 전압 부족으로 인한 영향을 최소화 할 수 있습니다. (240VAC Input 208V motor, 480VAC Input 400V motor)

13.4 배선

단상 입력 배선은 하기 그림과 같이 R/T 상에 연결해야 합니다.

Figure-3 Terminal Wiring Diagram

13.5 단상 전원 적용시 제한 사항

- 단상 입력 배선은 R(L1)/ T(L3)상에 연결합니다.

- DC 리플을 줄이기 위하여 AC/ DC reactor 가 필수적이며 37~90Kw 용량에 대하여 DC reactor 내장형을 사용하고 0.75~30kW 용량에 대하여 외부 AC/ DC reactor 가 설치되어야 합니다.

- 퓨즈와 리액터를 포함한 주변기기는 3상 입력에서와 동일하게 단상 입력에서 사용 가능합니다.

- 입력 결상 트립 발생시, 입력 결상 보호 (PRT-05) 기능을 해제합니다.

- OCT 또는 IOLT 와 같은 출력전류 보호는 단상 입력보다 큰 3 상 입력 정격을 기준으로합니다. 유저는 모터 사양(BAS-11~16), 과부하 트립(PRT-17~22), E-thermal 기능(PRT-40~43)의 관련 파라미터들을 설정해야 합니다.

Г

- 240Vac 모델의 경우 207Vac 모터 전압 생성을 위해 최소 입력 전압은 228Vac 이며, 480Vac 모델에 경우 415Vac 모터 전압 생성을 위해 최소 입력 전압은 456Vac 이상이 되어야 합니다.
- 전압 손실의 영향을 최소화하기 위하여, 240Vac 모델의 경우 208Vac 모터를 480Vac 모델은 400Vac 모터를 선택하십시오.

UL mark

The UL mark applies to products in the United States and Canada. This mark indicates that UL has tested and evaluated the products and determined that the products satisfy the UL standards for product safety. If a product received UL certification, this means that all components inside the product had been certified for UL standards as well.

Suitable for Installation in a Compartment Handing Conditioned Air

CE mark

The CE mark indicates that the products carrying this mark comply with European safety and environmental regulations. European standards include the Machinery Directive for machine manufacturers, the Low Voltage Directive for electronics manufacturers and the EMC guidelines for safe noise control.

Low Voltage Directive

We have confirmed that our products comply with the Low Voltage Directive (EN 61800-5-1).

EMC Directive

The Directive defines the requirements for immunity and emissions of electrical equipment used within the European Union. The EMC product standard (EN 61800-3) covers requirements stated for drives.

EAC mark

EHC

The EAC (EurAsian Conformity) mark is applied to the products before they are placed on the market of the Eurasian Customs Union member states.

It indicates the compliance of the products with the following technical regulations and requirements of the Eurasian Customs Union:

Technical Regulations of the Customs Union 004/2011 "On safety of low voltage equipment"

Technical Regulations of the Customs Union 020/2011 "On electromagnetic compatibility of technical products"

EC DECLARATION OF CONFORMITY

We, the undersigned,

٢

Representative:	LS ELECTRIC Co., Ltd.				
Address:	LS Tower, 127, LS-ro, Dongan-gu,				
	Anyang-si, Gyeonggi-do,				
	Korea				
Manufacturer:	LS ELECTRIC Co., Ltd.				
Address:	56, Samseong 4-gil, Mokcheon-eup,				
	Dongnam-gu, Cheonan-si, Chungcheongnam-				
do,					
	Korea				
Certify and declare under our sole responsibility that the following apparatus:					

Type of Equipment:	Inverter (Power Conversion Equipment)
Model Name:	LSLV-H100 series
Trade Mark:	LS ELECTRIC Co., Ltd.

Conforms with the essential requirements of the directives:

2014/35/EU Directive of the European Parliament and of the Council on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for usewithin certain voltage limits

2014/30/EU Directive of the European Parliament and of the Council on the harmonisation of the laws of the Member States relating to electromagnetic compatibility

Based on the following specifications applied:

EN IEC 61800-3:2018 EN 61800-5-1:2007/A1:2017

and therefore complies with the essential requirements and provisions of the 2014/35/CE and 2014/30/CE Directives.

Place:

Cheonan, Chungnam, Korea

바 장 군 2021.5,20 (Signature / Date)

Mr. PARK CHANGKEUN / Senior Manager (Full Name / Position)

EMI / RFI POWER LINE FILTERS

LS inverters, H100 series

VMC vector motor control

RFI FILTERS

THE LS RANGE OF POWER LINE FILTERS FILDIAAND FEP <u>1 Stand ard 1</u> SERIES, HAVE BEEN SPECIFICALLY DESIGNED WITH HIGH FREQUENCY L<u>S. INVERTERS</u>, THE USE OF LS FILTERS, WITH THE INSTALLATION ADVICE OVERLEAF HELP TO ENSURE FROMULE FREE USE ALONG SIDE SENSITIVE DEVICES AND COMPLIANCE TO CONDUCTED EMISSION AND IMMUNITY STANDARS TO EN 500.1.

CAUTION

IN CASE OF A LEAKAGE CURRENT PROTECTIVE DEVICES IS USED ON POWER SUPPLY, IT MAY BE FAULT AT POWER-ON OR OFF. IN AVOID THIS CASE, THE SENSE CURRENT OF PROTECTIVE DEVICE SHOULD BE LARGER

RECOMMENDED INSTALLATION INSTRUCTIONS

To conform to the **EMC** directive, it is necessary that these instructions be followed as closely as possible. Follow the usual safety procedures when working with electrical equipment. All electrical connections to the filter, inverter and motor must be made by a qualified electrical technician.

- 1-) Check the filter rating label to ensure that the current, voltage rating and part number are correct.
- 2-) For best results the filter should be fitted as closely as possible to the incoming mains supply of the wiring enclousure, usually directly after the enclousures circuit breaker or supply switch.
- 3-) The back panel of the wiring cabinet of board should be prepared for the mounting dimensions of the filter. Care should be taken to remove any paint etc... from the mounting holes and face area of the panel to ensure the best possible earthing of the filter.
- 4-) Mount the filter securely.
- 5-) Connect the mains supply to the filter terminals marked LINE, connect any earth cables to the earth stud provided. Connect the filter terminals marked LOAD to the mains input of the inverter using short lengths of appropriate gauge cable.
- 6-) Connect the motor and fit the <u>ferrite core (</u> output chokes) as close to the inverter as possible. Armoured or screened cable should be used with the 3 phase conductors only threaded twice through the center of the ferrite core. The earth conductor should be securely earthed at both inverter and motor ends. The screen should be connected to the enclousure body via and earthed cable gland.
- 7-) Connect any control cables as instructed in the inverter instructions manual.

IT IS IMPORTANT THAT ALL LEAD LENGHTS ARE KEPT AS SHORT AS POSSIBLE AND THAT INCOMING MAINS AND OUTGOING MOTOR CABLES ARE KEPT WELL SEPARATED.

LSLV series / Standard Filters											
INVERTER	POWER	CODE	CURRENT	VOLTAGE	LENAGE CURRENT	DIMENSIONS L W H	MOUNTING Y X	WEIGHT	MOUNT	FIG.	OUTPUT CHOKES
THREE PHASE NOM. MAX											
LSLV0055H100-2	5.5kW	FLD/A 3042	42A	2 50 VAC	0.5mA 27mA	310 x 50 x 85	30 x 295	2.4Kg		A	FS – 2
LSLV0075H100-2	7.5kW	FLD/A 3055	55A	2 50 VAC	0.5mA 27mA	250 x 85 x 90	60 x 235	2.9Kg		A	FS – 2
LSLV0110H100-2	11kW	FLD/A 3075	75A	2.50VAC	0.5mA 27mA	270 x 80 x 135	60 x 255	3.6Kg		A	FS - 2
LSLV0150H100-2	15kW	FLD/A 3100	100A	2 50 VAC	0.5mA 27mA	270 x 90 x 135	65 x 255	5Kg		Α	FS – 3
LSLV0185H100-2	18.5kW	FLD/A 3130	130A	250VAC	0.5mA 27mA	270 x 90 x 150	65 x 255	6.8Kg	1	Α	FS – 3

EN 55011 CLASS A IEC/EN 61800-3 C3

LSLV ser	ies /	Internal Filters						
NVERTER	POWER	FIG.	OUTPUT CHOKES					
THREE PHASE								
LSLV0055H100-4	5.5kW	2	FS - 2					
LSLV0075H100-4	7.5KW	2	F\$-2					
LSLV0110H100-4	11kW	2	F\$-2					
LSLV0150H100-4	15kW	2	F\$-3					
LSLV0185H100-4	18.5kW	2	FS-3					
LSLV0220H100-4	22kW	2	F\$-3					
LSLV0300H100-4	30kW	2	F\$-3					
LSLV0370H100-4	37kW	2	FS-3					
LSLV0450H100-4	45kW	2	F\$-3					
LSLV0550H100-4	55kW	2	FS-3					

LSLV series					
POWER	OUTPUT CHOKES				
THREE PHASE					
75kW	FS – 4				
90kW	FS - 4				
	POWER POWER 75KW 90KW				

EN 55011 CLASS A

IEC/EN 61800-3 C3

FIG. 2

٢

FLD SERIES (Standard)

FIG.A

VECTOR MOTOR CONTROL IBÉRICA (VMC) C/ Mar del Carlo, 10 - Pol. Ind. La Torre del Rector 08130 Santa Perpétua de Mogoda (Barcelona) SPAIN / ESPAÑA Tet +34 - 935 748 206 Fax: +34 - 935 748 248 E-mail: info@vmc.es http://www.vmc.es

PR0066
색인

0 0~+10V 전압 입력......85 **1**

-10~+10V	전압	입력		88
----------	----	----	--	----

2

24 단자	39, 40
2승 저감	75
2 승 저감 부하	116
V/F 패턴 운전	116

3

4

4극 표준 모터 520, 521, 522, 523, 524

Α

A1/C1/B1 단자	
ADV(확장 기능 그룹)	56, 408
Analog Hold <i>아날로그 주파수</i>	고정 참조
Anti Hunting Regulation	224
AO 단자	38, 294
아날로그 출력 설정 스위치(S	W5)35

AP1(Application1기능 그룹)	448
AP2(Application2기능 그룹)	456
AP3(Application3기능 그룹)	460
Application 1 기능 그룹	56
Application 2 기능 그룹	56
Application 3 기능 그룹	57
ASCII 코드	359
Auto-tunning	206
Aux Motor PID Compensation	284
A접점(Normal Open)	131

٦

В

BACnet	346, 382
Object Map	
Quick Communication Start	383
정의	382
통신 규격	382
프로토콜 Implement	385
BACnet Analog Input object	389
BACnet Analog Value object	387
BACnet Binary Input object	390
BACnet Binary Value object	
BACnet Data Link Layer	386
BACnet Error Massage	392
BACnet MAC ID/Sevice Object Ins	stance
	386
BACnet Max Master Property	386
BACnet MultiState Input object	391
BACnet MultiState object	388
BACnet Object	
Analog	387

Analog Input	
Binary	
Binary Input	
Err Massage	
MultiState	
MultiState Input	
BACnet 제공 Service	
BACnet 파라미터 설정	
BACnet 프로토콜	
BAS(기본 기능 그룹)	56, 402
Bipolar(양극 전원)	
BX	342, 499
B접점(Normal Close)	

С

CAP. Warning	
커패시터 수명 경보	502
CleanRPTErr	
CleanRPTErr Trip	342
CM 단자	37, 40
COM(통신 기능 그룹)	56, 429
CON(제어 기능 그룹)	56, 413
Constant Torque(MC7)	
CPU 와치독(Watch Dog) 트립	

D

Damper	.182
Damper Err Trip	.342
DB Warn %ED <i>제동 저항 사용률</i>	참조
제동 저항 사용률 경보	.501
DC 링크 전압135,	222
DecValveRamp	.194
DRV(드라이브 그룹)56,	397

Ε

Easy Start On	. 251
EG 단자	. 244 39
EMC 필터	41
비대칭 전원	41
사용	42
해제	41
Enclosed Type 1	. 527
Energy Saving	. 227
EPID 기능	. 172
EPID 레퍼런스	. 176
EPID 에러값	. 176
EPID 출력	. 176
PID 피드백 값	. 176
P 게인	. 177
미분 시간(EPID D-Time)	. 178
오실레이션	. 178
적분 시간(EPID I-Time)	. 178
EPID(EPID 기능 그룹)	56
EPID(응용 기능 그룹)	. 443
ETH모터 과열 방지(ETH)	참조
E-Thermal	. 341
E-Thermal	. 498
Exhaust Fan(MC3)	. 486
External PID 기능 그룹 <i>EPID(EPID</i>)기능
<i>그룹) 참조</i>	
External Trip	, 499

F

Fan Exchange

팬교체 경보502
Fan Trip332, 341, 499
Fan Warning 332, 343
팬 고장 경보501
Fan 수명 진단340
Fan 운전 교체 레벨340
Fan 운전 누적 시간340
FE(FRAME ERROR)
Fieldbus 필드버스 참조
FIFO/FILO261
Fire Mode225
Fire Mode 제외 고장225
Fire 모드 운전 경보501
설정226
운전 방향226
운전 주파수226
운전 횟수226
Flow Compensation184

G

Ground Trip	
지락	498

Н

H100 확장 공통 영역 파라미터	7
메모리 제어 영역 파라미터(읽기/쓰기	
모두 가능)379	9
모니터 영역 파라미터(읽기만 가능)36	7
제어 영역 파라미터(읽기/쓰기 모두	
가능)376	5

Ι

٦

I2 단자
아날로그 입력 설정 스위치(SW4)38
주파수 설정(전류/전압) 단자
IA(ILLEGAL DATA ADDRESS)
ID(ILLEGAL DATA VALUE)
IF(ILLEGAL FUNCTION) 358
In Phase Open
입력 결상 보호324
IN(입력 단자대 기능 그룹)56,417
INV Over Load
인버터 과부하 경보501
IO Board Trip
IO 보드 연결 트립IO Board Trip 참조
IP 20
IP 20 Type 외형 치수529

L

LCD 로더	
LCD 명암 조절	
배선 길이	40
컨피그 모드(CNF)	478
트립 모드	
Level Detect	198, 500
레벨 검출 경보	502
Level Detect trip	342
Load Tunning	196
Lost Command	342, 500
지령 상실 경보	501
지령 상실 경보	
지령 상실 트립	

Lost KeyPad499
키패드 지령 상실 경보502
Low Battery
배터리 저전압 경보502
Low Voltage
저전압 트립
Low Voltage2
LowLeakage PWM237
LS INV 485 프로토콜353
ASCII 코드359
모니터 등록 상세356
쓰기 상세356
에러 코드358
읽기 상세355
LSINV 485
Lubrication

Μ

M2(제 2 모터 기능 그룹)57,	474
Macro	
Constant Torque(MC7)	494
Exhaust Fan(MC3)	486
Supply Fan(MC2)	484
Macro 그룹	482
Main Capacitor 수명 진단	339
CAP Level 1	339
CAP Level 2	339
Metasys-N2	346
I/O Point Map	393
통신 규격	393
Metasys-N2 Analog Input	395
Metasys-N2 Analog Output	393
Metasys-N2 Binary Input	395
Metasys-N2 Binary Output	394

Metasys-N2 Error Code Metasys-N2 I/O Map	396
Analog Input	395
Analog Output	393
Binary Input	395
Binary Output	394
Metasys-N2 I/O Point Map	393
Metasys-N2 통신 규격	393
Metasys-N2 프로토콜	392
MMC	256
Auto Cahnge268,	281
Auto change Aux	269
Auto change Main	272
Aux Start DT	267
Aux Stop DT	267
Interlock	276
기본 시퀀스	263
레귤러 바이패스 282, 286, 287, 289, 290	288,
MMC Interlock	500
Modbus-RTU	346
Modbus-RTU 프로토콜	
Exception 코드	362
Read Holding Resister	360
Read Input Resister	360
Write Multiple Resister	362
Write Single Resister	361
기능 코드	360
Modbus-RTU프로토콜	
트시 승화 고토 여여 파리미티????	260
ㅎ갼 오관 ㅎㅎ ㅎㅋ ㅋ냐마더300,	303

Ν

No Motor Trip341,	498
No Motor Trip	336
Normal Close	308
Normal Open	307

Normal PWM	237
NPN 모드(Sink)	41
NPN/PNP 설정 스위치(SW2)	35
NTC Open	341
NTC Open	499

0

501
341
. 335, 341
. 341, 498
56, 423
. 341, 498
. 341, 499
. 341, 498
497
, 342, 501
. 318, 342
. 341, 498

Ρ

가게인23	2
P1~P7다기능 입력 단자 참초	2
P1+ 단자(+DC 링크 단자)30, 31, 32, 33	3
ParaWrite Trip	C
Payback	6
PID 기능152	2
PID P Gain16	1
PID 레퍼런스 값15	6
PID 에러 값15	6
PID 운전 대기(Sleep) 모드170	0
PID 운전 전환172	2

PID 제어 블록도	
PID 출력	156
PID 피드백 값	156
미분 시간(PID D-Time)	161
설정	152
오실레이션	161
적분 시간(PID I-Time)	161
PID 기능 그룹 <i>PID(PID기능</i> -	그룹) 참조
PID 용도	
속도 제어	153
압력 제어	153
온도 제어	153
유량 제어	153
PID(PID 기능 그룹)	56
PID(응용 기능 그룹)	434
Pipe Broken	202, 500
· 파이프 파손 경보	502
PipeBroken Trip	
PLC	
PNP 모드(Source)	40
PNP/NPN 모드 설정 스위치(SV	V2)
NPN 모드(Sink)	41
PNP 모드(Source)	40
PowerOn Resume	312, 313
Power-on Run <i>전원 투입 즉시</i>	기동 참조
Pre-heating	203
PRT(보호 기능 그룹)	57, 465
PT 100 <i>모터 과열</i>	센서 참조
PTC <i>모터 과열</i>	센서 참조
PumpClean	188

PWM	.236
주파수 변조	236
펄스 폭 변조	236

Q

Quantizing	
노이즈	

R

R/S/T 단자30, 31, 32, 33, 34, 507
Reset Restart 트립 발생 후 초기화 시
재기동 참조
Retry Number104 RS-232
컨버터345
통신345
RS-485
내장형 통신94
신호 단자39, 94
컨버터345
통신345
RS-485 신호 입력 단자 <i>S+/S-/SG 단자</i> <i>참조</i>
RTC210, 스케쥴링 운전 참조

S

S 커브	패턴	
실제	가/감속 시간 계산법	114
S/W 버	전	253
제품		253

키패드
S+/S-/SG 단자39
side by side12
Soft Fill 기능
Soft Fill PID 레퍼런스168
Soft Fill 레퍼런스 증가 시간 169
Soft Fill 레퍼런스 증가 폭 169
Soft Fill 에러 폭169
Soft Fill 운전168
Soft Fill 탈출 값168
프리 PID 운전 주파수168
프리 PID 유지 시간168
Start&End Ramp 193
Supply Fan(MC2) 484
SW1 <i>통신 종단 저항 스위치 설정 참조</i>
SW2 NPN/PNP 설정스위치 설정 참조
SW3V1/T1 설정 스위치 참조
SW4 아날로그 입력 설정 스위치 참조
SW5 아날로그 출력 설정 스위치 참조

Т

Thermal Trip	499
TI 단자	
Time Event Scheduling	210
TO 단자	

U

U&M 모드	249,	352
U/V/W 단자	.30, 31, 32, 33, 34,	507
Under Load		

경부하 경보	
경부하 트립	
Under Load Trip	
UnderLoad	
Load Tune	.부하튜닝 기능 참조
Unipolar(단극 전원)	

V

V/F 제어115
2승 저감 V/F 패턴 운전116
사용자 V/F 패턴 운전117
V1 단자38, 84
V1/T1 설정 스위치(SW3)35
V2 입력92
l2 전압 입력92
아날로그 입력 설정 스위치(SW4)36
VR 단자37, 85

W

٦

가/감속 기준 주파수 10	6, 108
Delta Freq	107
Max Freq	106
Ramp T Mode	106
가/감속 시간	106
가/감속 시간 전환 주파수 설정	110
다기능 단자로 설정	109
운전 주파수 기준 설정	108

치대 조파스 기즈 서저 100
기대 구피구 기군 글ᆼ
가감쪽 중지 지당114
가/감속 패턴75, 112
가변 토크 부하116,223
가상 다기능 입력 설정34
각부 명칭
경보
Fire Mode 경보343
Level Detect 경보34
경부하 경보342
과부하 경보342
배터리 저전압 경보34
인버터 과부하 경보34
제동 저항 사용률 경보34
지령 상실 경보342
커패시터 수명 경보34:
파이프 파손 경보34:
팬 고장 경보34:
팬 교체 시기 경보34:
경보(Warning)49
경보 항목50
고장/경보 일람표
경부하 트립
고객 센터
고장 34
경보(Warning) 342 50
고장/경보 익락표 34 [/]
ulvi(Laion)

레벨(Level)497
심각한 고장341
트립(Trip)497
하드웨어 오류497
공진 주파수128
주파수 점프128
캐리어 주파수236
공통 단자 <i>EG 단자 참조</i>
과부하 경보 Over Load 참조
과부하 트립 Over Load 참조
과부하율237
과열 트립 Over Heat 참조
과전류 트립 Over Current1 참조
과전압 트립 Over Voltage 참조
교류 전원 입력 단자 R/S/T 단자 참조,
R/S/T 단자 참조, R/S/T 단자 참조,
R/S/T 단자 참조
국번
규정 토크29
기동 및 정지 기울기 조정193
기동 방법121
가속 기동121
직류 제동 후 기동121
기본 기능 그룹 BAS(기본 기능 그룹) 참조
기본 조작법49
기술 상세 사양525

나란히 배열.....*side by side 참조* 나사 규격......537 나사 사이즈......538 나사 토크......538 입출력 단자 나사......538 제어 회로 단자 나사......539 내장형 통신...... RS-485 참조 냉각 팬......241 팬 제어......241 노이즈......41,87 저역 통과 필터......86 누적 전력량 초기화......253 누전 차단기......510,533

L

다기능 단자로 출력 차단	334
다기능 입력 단자	37
IN 65~71	419
Px Define	419
Px 단자 기능 설정	419
공장 출하 값	37
다기능 입력 단자 오프 필터131,	132
다기능 입력 단자 온 필터131,	132
다기능 입력 단자 제어131,	133

다기능	키
-----	---

Multi Key Sel480
다기능 키 항목480
다기능(릴레이/오픈컬렉터) 출력 단자
다기능 릴레이 트립 출력306
다기능 릴레이 1 항목(Relay 1)425
다기능 릴레이 2 항목(Relay 2)426
다기능 릴레이 3 항목(Relay 3)426
다기능 릴레이 4 항목(Relay 4)426
다기능 릴레이 5 항목(Relay 5)426
다기능 출력 단자 및 릴레이 설정300
다기능 출력 단자 지연 시간 설정307
다기능 출력 온/오프 제어292
다기능 출력 항목(Q1 Define)426
다단속 주파수
Speed-L/Speed-M/Speed-H97
설정96
단자대 조그 운전1-정방향 조그142
단자대 조그 운전2-역방향 조그143
댐퍼 에러 트립 Damper Err Trip <i>참조</i>
댐퍼 운전182
댐퍼 오픈 입력 신호182
댐퍼 오픈 지령 출력 신호182
댐퍼 오픈 체크 시간182
델타 결선42
드라이브 그룹 <i>DRV(드라이브 그룹) 참조</i>
드웰(Dwell) 운전149
가/감속 드웰 주파수149
가속 드웰149

감속 드웰	149
디레이팅	237, 550
디지털 출력	

٦

2

래치(Latch)	497
레벨 검출 기능	198
레벨 검출 트립	참조
레벨 검출 트립 재시작 시간	198
레벨(Level)	497
루브리케이션	183
루브리케이션 유지 시간	183
리니어 V/F 패턴 운전	
기저 주파수	.115
시작 주파수	.115
리액터 19, 20,	536
리액터 규격	536
리플	88

마스터(Master)	345
마운팅 볼트	20
마운팅부	22
마이크로 서지 필터	34
매크로 그룹	482
매크로 선택	57, 253
Basic	
Circul Pump	
Compressor	
Constant Torque	254

Coolong Tower254
Supply Fan254
Vacuum Pump254
멀티 드톱 링크 시스템
메거 테스트 515, 517
명판1
모니터
모니터 등록 상세 프로토콜356
운전 상태 모니터308
운전 시간 모니터311
모터
모터 극수151
모터 무부하 전류151
모터 슬립 속도151
모터 용량151
모터 정격 전류151
모터 효율151
모터 과열 방지(ETH)314
E-Thermal
모터 과열 방지 트립314
모터 과열 센서316
온도 센서 입력 방법317
모터 과열 트립 <i>E-Thermal Trip 참조</i>
모터 보호314
모터 없음 트립 No Motor Trip 참조
모터 출력 전압 조정120
모터 회전 방향 확인48
목표 주파수84, 121
Cmd Frequency397
문제 해결497

기타 문	문제	발생	시	조치	사항.	5	606
트립 팀	발생	시 조	치	사항.		5	603

н

반 이중 통신 방식	
반한시 특성	498
배선	24
3 심 전선	34
동 전선	24
배선 길이	
배선 브라켓	26
배선용 차단기	533
전원 단자대 배선	29
접지	27
제어 단자대 배선	35
커버 분리	25
커버 조립	44
페라이트	40
배터리 교체	517
배터리 장착	23
배터리 저전압 경보	331, 343
밸브 감속 시간 설정	194
보관	518
보관 온도	10
보조 모터 PID 보상 기능	
보조 주파수	137
보조속 게인	138
보조속 주파수	137

보조속 지령 설정137
설정137
주속 주파수137
최종 지령 주파수 계산139
보호 기능 그룹 PRT(보호 기능 그룹) 참조
볼륨 저항37
부품 수명 진단339
Fan 수명 진단340
Main Capacitor 수명 진단339
부하튜닝196
분해능87
분해도3
브로드캐스트(BroadCast)355
비 동기 통신 체계344
비대칭 접지 전원41
EMC 필터41
비상 정지 트립 <i>BX 참조</i>
비트131
다기능 출력 설정306
비트 설정132
비트 오프(Off)132
비트 온(On)132
속도 검색 설정
스톨 방지321

Х

사용자 V/F 패턴 운전......117

사용자 그룹 추가	57, 248
UserGrp SelKey	248
파라미터 등록	248
파라미터 삭제	250
사용자/매크로 그룹	352
U&M 모드	352
파라미터 그룹 설정	352
상간 내압	508
상용 전원 전환 운전	240
서지 킬러	34, 46
선간 전압 강하	34
설치	17
배선	24
설치 흐름도	17
시스템 기본 구성도	19
위치 선정	11
제품 거치	20
설치 위치 선정	11
side by side	12
설치 환경	10
작동 고도/진동	10
주위 기압	10
주위 습도	10
주위 온도	10
주위 환경	10
설치 후 점검 사항	45
속도 검색(Speed Search) 운전	228
Flying Start-1	229
Flying Start-2	229

P/I 게인232
설정 종류230, 234
속도 단위 변경(Hz↔Rpm)96
속도 지령 상실326
수동 토크 부스트118
순시 정전222, 231, 233
숫자/영문자 표시 형식50
스위치
NPN/PNP 설정 스위치(SW2)35
V1/T1 설정 스위치(SW3)
아날로그 입력 설정 스위치(SW4)35
아날로그 출력 설정 스위치(SW5)35
통신 종단 설정 스위치(SW1)35
스케쥴링 운전210
ExceptionDate210
Time Event
Time Period210
스톨(Stall)320
비트 온(On)/오프(Off)321
스톨 방지320
슬레이브(Slave)345
슬립(Slip)151
슬립(Slip) 보상 운전151
승강 부하118
시간 단위 설정106
0.01sec107
0.1sec
1sec107
시스템 기본 구성도19
시운전47

시퀀스 공통 단자......CM 단자 참조

아날로그 입력37,56
l2 전류 입력91
l2 전압 입력92
TI 펄스 입력93
V1 전압 입력84
아날로그 입력 설정 스위치(SW2)92
아날로그 입력 설정 스위치(SW4)35
아날로그 입력으로 주파수 고정95
아날로그 주파수 고정95
Analog Hold95
아날로그 출력
AO 단자38
전압 및 전류 출력294
펄스 출력297
아날로그 출력 설정 스위치(SW5).35,294
안전 운전 모드147
안전을 위한 주의 사항ii
암(ARM) 단락 전류 트립 Over Current2
참조
암호245, 246, 381
양자화 <i>Quantizing 참조</i>
업-다운(Up-Down) 운전144
업데이트253, 356
에너지 버퍼링 운전222
에너지 절감량186
CO2 절감률187
에너지 절감량186 CO2 절감률187

단위 전력 비용187	
에너지 절약 운전227	
수동 에너지 절약 운전227	
자동 에너지 절약 운전227	
에러 코드358	
FE(FRAME ERROR)	
온도 센서 트립NTC Open 참조	
옵션 슬롯253	
옵션 트립 <i>Option Trip-x 참조</i>	
외부 24V 전원 단자 <i>24 단자 참조</i>	
외부 트립 <i>External Trip 참조</i>	
외부 트립 신호 처리325	
운전 모드 (HAND/AUTO/OFF) 선택.59, 74,78	
운전 시간311	
동작 누적 시간311	
운전 누적 시간311	
운전 누적 시간 초기화311	
운전 주파수 <i>주파수 설정 참조</i>	
운전 중 저전압 트립Low Voltage2 T <i>rip</i> <i>참조</i>	
운전 지령	
Cmd Source98 RS-485	
설정98	
정/역방향 단자 지정99	
지령/회전 방향 단자 지정100	

ㅈ

Г

자동 재기동 설정233	
자동 토크 부스트119	
자동 토크 부스트 1119	
자동 토크 부스트 2120	
자동 튜닝206	
자동 토크 부스트1119	
자동 토크 부스트2120	
자동 튜닝206, 405	
All(정지형)209	
All(회전형)208	
파라미터 초기값207	
전동기 예열 기능203	
전력 소비량309,310	
전류 헌팅 방지 기능224	
전선14	
동 전선14	
입출력 배선 규격14	
접지선 규격14	
제어 회로 배선 규격16	
차폐 연선46	
전압 강하율14	
전압/전류 출력 단자AO <i>단자 참조</i>	
전원 단자	
<mark>P2+/B 단자</mark> 30, 32	
R/S/T 단자30, 31, 32, 33	
U/V/W 단자30, 31, 32, 33	
전원 단자대 배선29	

전원 투입 즉시 기동	102
전자 접촉기	
점검	
일상 점검	513
정기 점검(1 년 주기)	514
정기 점검(2 년 주기)	517
점프 주파수	128
접점	131
A 접점	131, 307, 325
B 접점	131, 308, 325
접지	27
접지 단자	27
접지선 규격	14
제 3 종 접지	28
특별 제 3 종 접지	28
정격	
디레이팅	550
모터 정격 전류	151
모터 정격 전압	
정격 슬립 속도	151
정격 슬립 주파수	152
정방향/역방향 회전 금지	101
정지 방법	
감속 정지	122
직류 제동 후 정지	123
파워 제동	125
프리 런 정지	124
제 2 모터 기능 그룹 <i>M2(</i>	제 2 모터 기능

그룹) 참조

제 2 모터 운전238
제 2 운전 방법130
제 2 지령(2nd Source)130
주 지령(Main Source)130
제동 유닛19, 293
제동 저항
제동 저항 규격540
제동 저항 사용률(DB Warn %ED)329
제동 회로329
제동 저항 사용률329
제어 기능 그룹 <i>CON(제어 기능 그룹)</i>
참조
제어 단자대 배선35
제품 출력 단자 <i>R/S/T 단자 참조</i> , <i>R/S/T</i>
탄자 참조, R/S/T 단자 참조, R/S/T 단자
참조
조그(Jog) 운전142
조그 주파수142
조그(Jog)운전
단자대 조그 운전 1142
단자대 조그 운전 2143
주변 기기533
주파수 상하한 값
주파수 상한 값127
주파수 하한 값127
주파수 설정83
l2 전류 입력91

이 저아 이러 이이
12 신입 입덕92
RS-48594
TI 펄스 입력93
V1 전압 입력84
키패드84
주파수 설정(전압) 단자 <i>V1 단자 참조</i>
주파수 설정(펄스 트레인) 단자 <i>TI 단자</i>
참조
주파수 설정용 전원 단자 <i>VR 단자 참조</i>
주파수 제한126
주파수 상하한 값127
최대/시작 주파수126
지락 트립 <i>Ground Trip 참조</i>
직렬 통신 재기동 기능312,313
직류 제동 주파수123
직류 제동 후 기동121
직류 제동 후 정지123

٦

大

청소5	513
출력 결상 트립 <i>Out Phase Open 침</i>	<i>\</i> 조
출력 단자대 기능 그룹 <i>OUT(출력 단지</i>	┝ᆮᢔ
기능 그룹) 참조	
출력/통신 단자	.38
24 단자	.39
A1/C1/B1 단자	.39
AO 단자	.38
EG 단자	.39
S+/S-/SG 단자	.39

중선 표시능

Г

╕

캐리어 주파수34, 236	Ę
공장 출하 값237	
디레이팅550	
컨피그 모드477	
컨피그 모드(CNF)252, 478	
케이블 타이40	
키패드49	
S/W 버전253	
조작부49	
표시부49	
키패드 사용58	
모니터 표시 모드의 항목 변경68	
상태 표시부의 모니터링 항목 설정69	
운전 모드 선택59	
원하는 코드로 직접 이동(점프 코드)65	
유저/매크로 표시 모드의 그룹 이동.62	
코드 (기능 항목) 이동63	Ę
파라미터 값 설정66	
파라미터 표시 모드의 그룹 이동60	Ē
표시 모드 이동58	Ē

E

타이머	
토크	24, 34
토크 부스트	

	과여자	119
	수동 토크 부스트	118
	자동 토크 부스트	119
통	신	344
	BACnet	382
	가상 다기능 입력 설정	349
	데이터 전송용 파라미터 그룹 설정	352
	메모리 맵	351
	사용자/매크로 그룹 설정 파라미터	352
	시스템 구성도	345
	운전 지령 및 주파수 설정	348
	지령 상실 보호 작동 설정	348
	통신 관련 파라미터	346
	통신 규격	344
	통신 번지	360
	통신 속도	347
	통신선 연결	345
	통신으로 설정한 파라미터 값 저장	350
	프로토콜	349
통	신 기능 그룹 <i>COM(통신 기능 _</i>	1룹)
	참조	
통	신 옵션	130
통	신 종단 저항 설정 스위치(SW1)	35
E	립 모드	477
E	립 발생 후 초기화 시 재기동	104
E	립(Trip)	497
	고장/경보 일람표	341
	트립 발생 시 조치 사항	503
	트립 이력 삭제	253

트립	항목	497	ī
트립	해제	335	-

п

파라미터66	
변경된 파라미터 표시247	프
암호245, 246	
읽기/쓰기/저장243	
전체 기능표397	
초기화244	
파라미터 값 설정66	π
파라미터 모드 숨김245	
파라미터 변경 금지246	글 피
파라미터 초기화72	걸
파라미터 간편 시작251	2
파라미터251	
파라미터 쓰기 트립ParaWrite Trip <i>참조</i>	하
파이프 파손 검출 기능	화
파이프 파손 트립PipeBroken Trip <i>참조</i>	Fi
팬 경보 <i>Fan Warning 참조</i>	회
팬 트립 <i>Fan Trip 참조</i>	회
펄스 출력 단자 <i>TO 단자 참조</i>	- •
펌프 클린188	
페라이트40	

폐기	513, 519
퓨즈	536
퓨즈 규격	536
프레스용 회생 회피	293
P 게인/I 게인	
프로토콜	
BACnet 프로토콜	
LS INV 485	
LS INV 485 프로토콜	353
Metasys-N2 프로토콜	
Modbus-RTU	349
프리 런 정지	124
플럭스 제동	320
필드버스	
필터 시정 수	85, 86, 131

٦

ㅎ

$\overline{\Delta}$	하드웨어 오류	
)2	확장 기능 그룹	ADV <i>(확장 기능 그룹</i>
$\overline{\Delta}$	·····································	
<u>र</u>	회생 에너지	
<u></u>	회전 금지	
<u></u>	역방향	
88	정방향	